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Abstract

The course offers as a soft and self-contained introduction to modern applied probability

covering theory and application of stochastic models. Emphasis is placed on intuitive

explanations of the theoretical concepts such as random walks, the law of large numbers,

Markov processes, mutual information, Shannon’s entropy, etc., supplemented by practi-

cal/computational implementations of basic algorithms. Most of the discussed concepts

are illustrated with examples from natural sciences. To successfully master the disci-

pline, students must have basic skills in creating programs in any programming language

(Python, Julia, etc.).
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Chapter 1

Random Variable. Moments.
Characteristic Function

To define a random (or stochastic) variable one needs to know a set of possible values,

which variable can take, and a probability distribution over this set. The set of possible

values, which we denote as Ω, can be discrete, continuous or mixed. The probability to

find an instance from Ω in the interval between x and x + dx is p(x)dx, where p(x) is

the probability distribution density. (This is in the continuous case, in the discrete case,

or in a general case, we simply call it the probability distribution.) When we want to

emphasize dependence over the entire probability distribution, p(x), ∀x ∈ Ω, we denote

it by X. Somehow casually, we will often say that the random variable X takes a value, x.

From the definition of p(x) it is obvious that

p(x) ≥ 0, ∀x ∈ Ω, (1.1)

and normilized ∫
Ω

p(x)dx = 1. (1.2)

Note, that in the case whenΩ is mixed, the probability distribution function contains delta

functions

p(x) =
∑

n

pnδ(x − xn) + p̃(x). (1.3)

A related object of interest is the so-called cumulative distribution function, P(x),

2
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which defines the total (cumulative) probability, that X has a value ≤ x,

P(x) =

x∫
−∞

p(x′)dx′. (1.4)

1.1 Moments

Consider a function f (X) depending on a random variable X. The average or expec-

tation value of the function f (X) is

E[ f (x)] ≡ ⟨ f (X)⟩ =
∫
Ω

f (x)p(x)dx. (1.5)

In particular, the average E[Xm] ≡ ⟨Xm⟩ ≡ µm is called the m-th moment of X, and

µ1 ≡ E[X] ≡ ⟨X⟩ =
∫
Ω

xp(x)dx (1.6)

has the name mean or average. The next commonly used characteristic are called vari-

ance, dispersion or variation

σ2 = ⟨(X − ⟨X⟩)2⟩ = µ2 − µ
2
1, (1.7)

which characterizes the deviation of X from its mean value ⟨X⟩. The quantity σ is called

standard deviation.

1.2 Important Examples

Bernoulli Distribution is the probability distribution of a random variable which takes

the value 1 (success) with probability of p and the value 0 (failure) with the remaining

probability of q = 1 − p. The Bernoulli distribution represents (in particular) a coin

toss where 1 and 0 would represent ”head” and ”tail” (or vice versa), respectively. The

probability distribution function is

p(x) = pδ(x − 1) + qδ(x), (1.8)

and then

µn = ⟨Xn⟩ =

∞∫
−∞

xn p(x)dx = p, n = 1, 2, . . . . (1.9)

In this case the variance is σ2 = µ2 − µ
2
1 = pq.
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The number k of successes in a series of N independent Bernoulli trials is described

by Binomial Distribution with parameters N and p, where p is a probability of success in

each trial. The probability distribution function is given by

B(k,N, p) = Ck
N pk(1 − p)N−k =

N!
k!(N − k)!

pk(1 − p)N−k, (1.10)

and for a single trial, i.e. N = 1, the binomial distribution is a Bernoulli distribution (1.8).

Another important discrete distribution is the Poisson Distribution. It expresses the

probability of a given number of events occurring within a fixed interval of time, if these

events occur with a known average rate and independently of the pre-history (the Markov

independence property). The probability to observe k events within the interval is given

by

p(k) =
λk

k!
e−λ, k = 0, 1, 2, . . . , λ > 0. (1.11)

We should not forget to check that the distribution is properly normalized (1.2). The

average number of events in the interval

µ1 =

∞∑
k=0

kλk

k!
e−λ =

∞∑
k=1

λk

(k − 1)!
e−λ = λ

∞∑
n=0

λn

n!
e−λ = λ. (1.12)

The second moment is

µ2 =

∞∑
k=0

k2λk

k!
e−λ =

∞∑
k=1

kλk

(k − 1)!
e−λ = λ

∞∑
n=0

(n + 1)λn

n!
e−λ = λ(λ + 1), (1.13)

and then the variance is σ2 = µ2 − µ
2
1 = λ. Note, that the expectation value and variance

of the Poisson distribution are both equal to the same value, λ.

Some examples of the Poisson distribution are: probability distribution of the number

of phone calls received by a call center per hour, probability distribution of the number of

meteors greater than 1 meter in diameter that strike earth in a year, probability distribution

of the number of typing errors per page, and many other.

It should be noted, that the binomial distribution (1.10) converges towards the Poisson

distribution (1.11) as the number of trials N goes to infinity and the probability of success

p goes to zero, while the product N p→ λ remains fixed. Indeed,

p(k) = Ck
N pk(1 − p)N−k =

N(N − 1) . . . (N − k + 1)
k!

(
λ

N

)k (
1 −

λ

N

)N−k

(1.14)

=
λk

k!

(
1 −

λ

N

)N (
1 −

1
N

)
. . .

(
1 −

k − 1
N

) (
1 −

λ

N

)−k

→
λk

k!
e−λ, N → ∞.
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This statement is known as the law of rare events or Poisson limit theorem and we will

discuss it in more detail in the chapter 3.

The most important continuous distribution is Gaussian Distribution. The general

form of its probability density function is

p(x) =
1

σ
√

2π
exp

(
−

(x − µ)2

2σ2

)
. (1.15)

The parameter µ is the mean or expectation of the distribution, while the parameter σ is

its standard deviation. The variance of the distribution is σ2. A random variable with a

Gaussian distribution is said to be normally distributed.

The Gaussian distribution is often found in the world around us due to the central

limit theorem, which we will talk about in the next chapter. Here we will consider a

special case of it, which is known as the De Moivre-Laplace theorem. It states that the

normal distribution may be used as an approximation to the binomial distribution, if the

probability of success in each trial p ∈ (0, 1) and the number of trials N → ∞, i.e.

p(k) = Ck
N pkqN−k →

1√
2πN pq

exp
(
−

(k − N p)2

2N pq

)
, N → ∞. (1.16)

The supplementary materials to the lecture illustrate how well this relation is fulfilled for

different values of N.

Next, let us consider properties of another continuous distribution – the Lorentz or
Cauchy Distribution. The distribution plays an important role in physics, since it de-

scribes the resonance behaviour (e.g., the form of laser spectrum). The probability density

function is given by expression (check that it is properly normilized)

p(x) =
1
π

γ

(x − a)2 + γ2 , −∞ < x < +∞. (1.17)

The first moment is

µ1 =
γ

π

+∞?
−∞

xdx
(x − a)2 + γ2 = a, (1.18)

and the second moment µ2 is not defined (infinite). This is an example illustrating that

not all probability distributions have a bounded variance. Note that strictly speaking the

first moment µ1 is also not defined, but here we can generalize the definition of moments

and calculate integrals in the sense of the principal value. Sometimes this generalization

is used in physics.
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1.3 Probabilistic Inequalities

Intuitively one would say that it is rare for an observation to deviate greatly from the

expected value. Markov’s inequality and Chebyshev’s inequality place this intuition on

firm mathematical footings.

Markov’s inequality. For a nonnegative random variable X, and for any positive real

number C > 0:

P(X ≥ C) ≤
E[X]

C
, (1.19)

where P(X ≥ C) is the probability that a random variable X has a value greater or equal

to a constant C. The proof is simple and straightforward (do it as an exercise).

Chebyshev’s inequality. Let X be a random variable and let C > 0 be any positive real

number. Then:

P(|X − E[X]| ≥ C) ≤
σ2

C2 . (1.20)

To prove it one can use the Markov’s inequality for the newly introduced Y = (X−E[X])2.

As an example let us consider the Coupon Collector’s Problem. Suppose that there

are n different coupons and you want to collect all of them. At every step you can get only

one random coupon. What is the probability that you still do not have all coupons after

t steps? The probability that we have not a particular coupon at a single step is 1 − 1/n.

The probability that a particular coupon is missing after t steps is (1 − 1/n)t. Since there

is n different coupons, mean/average value of coupons that we do not have after t steps is

n(1 − 1/n)t. Using Markov’s inequality one estimates:

P(number of coupons, still missing ≥ 1) ≤ n(1 − 1/n)t ≤ ne−t/n, (1.21)

where deriving the last inequality we have used the relation 1 − x ≤ e−x.

In what follows, we will also use Jensen’s inequality. It states that for a convex

function g and for a random variable X, we have

E[g(X)] ≥ g(E[X]). (1.22)

If g is concave then the reverse inequality holds. To proof, we introduce µ = E[X] and

let Lµ(x) = a + bx be the tangent line to the function g at x = µ, i.e., Lµ(µ) = g(µ). By

convexity we know that g(x) ≥ Lµ(x) for every point x. Thus, we have that

E[g(X)] ≥ E[Lµ(x)] = a + bµ = g(E[X]). (1.23)

To develop some intuition and better understand the formal proof, it is useful to refer to

Fig. 1.1, which contains a qualitative explanation in the caption.
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Figure 1.1: A graphical ”proof” of Jensen’s inequality. The dashed curve along the X axis

is the hypothetical distribution of X, while the dashed curve along the Y axis is the cor-

responding distribution of g(X) values. Note that the convex mapping g(X) increasingly

stretches the distribution for increasing values of X.

1.4 Characteristic Function

The characteristic function of any real-valued random variable is the Fourier-Transform

of its probability distribution function,

G(k) = ⟨eikX⟩ =

+∞∫
−∞

eikx p(x)dx. (1.24)

It exists for all real k and obeys relations

G(0) = 1, |G(k)| ≤ 1. (1.25)

The characteristic function contains information about all the moments µm. Moreover the

characteristic function allows the Taylor series representation in terms of the moments:

G(k) =
∞∑

m=0

(ik)m

m!
⟨Xm⟩, (1.26)

and thus

⟨Xm⟩ =
1
im

∂m

∂km G(k)
∣∣∣∣
k=0
. (1.27)



8 Random Variable. Moments. Characteristic Function

This implies that derivatives of G(k) at k = 0 exist up to the same m as the moments µm.

To illustrate the relation let us consider characteristic function of the Bernoulli distri-

bution. Substituting Eq. (1.8) into the Eq. (1.24) one derives

G(k) = 1 − p + peik, (1.28)

and thus

µm =
∂m

∂(ik)m [1 − p + peik]
∣∣∣∣
k=0
= p. (1.29)

The result is naturally consistent with Eq. (1.9).

1.5 Cumulants

Cumulants κn of a probability distribution are a set of quantities that provide an alter-

native to the moments of the distribution. Moments determine the cumulants in the sense

that any two probability distributions whose moments are identical will have identical

cumulants as well, and similarly the cumulants determine the moments. In some cases

theoretical treatments of problems in terms of cumulants are simpler than those using

moments.

The cumulants are also defined by the characteristic function as follows

ln G(k) =
∞∑

m=1

(ik)m

m!
κm. (1.30)

According to Eq. (1.25) this Taylor series start from unity. Utilizing Eqs. (1.26) and

(1.30), one derives the following relations between the cumulants and the moments

κ1 = µ1, (1.31)

κ2 = µ2 − µ
2
1 = σ

2. (1.32)

The procedure naturally extends to higher order moments and cumulants.

Now, consider an example of the Poisson distribution defined according to (1.11). The

respective characteristic function is

G(p) =
∞∑

k=0

λk

k!
e−λeipk = e−λ

∞∑
k=0

(λeip)k

k!
= exp

[
λ(eip − 1)

]
, (1.33)

and then

ln G(p) = λ(eip − 1). (1.34)

Next, using the definition (1.30), one finds that κm = λ, m = 1, 2, . . . .
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1.6 Statistical Physics

The objects like characteristic functions are very useful in the field of statistical physics.

According to the Boltzmann distribution, the equilibrium probability p(s) that a system is

in a given state s

p(s) =
1
Z

e−βE(s), Z =
∑

s

e−βE(s), (1.35)

where β = 1/T and E(s) is the energy of the state s. The normalization factor Z is called

the partition function. In order to demonstrate utility of the partition function, let us

calculate the thermodynamic value of the total energy. This is simply the expected/mean

value of energy

⟨E⟩ =
∑

s

p(s)E(s) =
1
Z

∑
s

E(s)e−βE(s) = −
1
Z
∂Z
∂β
= −

∂ ln Z
∂β

. (1.36)

The variance of the energy (energy fluctuations) is

∆E2 = ⟨(E − ⟨E⟩)2⟩ =
∂2 ln Z
∂β2 , (1.37)

(Check it through straightforward computations.) One concludes that ln Z (compare to

ln G) plays an important role in statistical physics.

1.7 Problems

Problem 1. Exponential Distribution. The probability density function of an expo-

nential distribution is

p(x) =

Ae−λx, x ≥ 0,

0, x < 0,
(1.38)

where the parameter λ > 0.

(1) Calculate the normalization constant A of the distribution.

(2) Calculate the mean value and the variance of the probability distribution.

The characteristic function of a distribution is

G(k) =

+∞∫
−∞

eikx p(x)dx. (1.39)

The characteristic function can be used to calculate high-order moments of the distribu-

tion.
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(3) Calculate the characteristic function G(k) of the exponential distribution.

(4) Utilizing G(k), calculate the m−th moment of the distribution.

Problem 2. Splitting the circle. Randomly choose three points on a circle x2 + y2 = 1.

These points form a triangle and divide the circle into three arcs.

(1) Calculate analytically the expected length of the arc containing the point (1, 0).

(2) Confirm your analytical result by numerical simulations.

(3) Calculate analytically the probability that the center of the circle is contained within

the triangle.

(4) Verify the answer using numerical simulations.

Problem 3. Birthday’s Problem. What is the probability, pm, that m people in a room

all have different birthdays?

Solution: Let (b1, b2, . . . , bm) forms a list of people birthdays, bi ∈ {1, 2, . . . , 366}.

We slightly simplify the problem assuming that each year contains 366 days. There are

366m different lists, and all are equiprobable. We should count the lists, which have

bi , b j, ∀i , j. The amount of such lists is
∏m

i=1(366 − i + 1). Then, the final answer

pm =

m∏
i=1

(
1 −

i − 1
366

)
. (1.40)

The probability that at least 2 people in the room have the same birthday day is 1 − pm.

Note that 1 − p23 > 0.5 and 1 − p22 < 0.5.

Problem 4. One hundred people line up to board an airplane. Each has a boarding

pass with assigned seat. However, the first person to board has lost his boarding pass and

takes a random seat. After that, each person takes the assigned seat if it is unoccupied,

and one of unoccupied seats at random otherwise. What is the probability that the last

person to board gets to sit in his assigned seat?

Problem 5. Calculate the characteristic function (1.24) of the Cauchy distribution

(1.17). Show that moments do not exist.

Problem 6. Prove that κ3 = µ3 − 3µ2µ1 + 2µ3
1.

Problem 7. A book of 500 pages contains 100 misprints. Estimate the probability

that at least one page contains 5 misprints.



Chapter 2

Properties of Gaussian Distribution.
Law of Large Numbers

Gaussian variables, generating function, Wick’s theorem, independent random vari-

ables, characteristic function, central limit theorem.

2.1 One-Dimensional Normal Distribution

Let us consider a continuous random variable −∞ < x < +∞ with Gaussian probabil-

ity density function

p(x) = N(µ, σ2) =
1
√

2πσ
exp

(
−

(x − µ)2

2σ2

)
, (2.1)

where µ and σ are the mean value and the variance of the distribution.

The moments ⟨xn⟩ can be calculated by direct integration. Another way to find the

high-order moments is via the characteristic function

G(k) =
∫

eikx p(x)dx =
+∞∑
n=0

inkn

n!
⟨xn⟩. (2.2)

Then moments of x are coefficients in the Taylor series/expansion of the generating func-

tion. In the Gaussian case the characteristic function can be calculated explicitly

G(k) = exp
(
iµk −

σ2k2

2

)
. (2.3)

If the mean is set to zero, µ = 0, one derives

⟨x2n⟩ =
(2n)!
2nn!

σ2n, ⟨x2n+1⟩ = 0. (2.4)

11
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Exercise 1.
Find the normalization constant A, the expected value µ and the variance σ for the

following probability distribution

p(x) = A exp(−x2 + 2x). (2.5)

Solution: Let us rewrite the distribution (2.5) as

p(x) = A exp(−(x − 1)2 + 1). (2.6)

Comparing this expression with (2.1), one derives

µ = 1, σ =
1
√

2
, A =

√
π

e
. (2.7)

2.2 Central limit theorem

Consider the sum

Xn =

∑n
i=1 xi

n
, (2.8)

where the random numbers x1, x2, . . . , xn are sampled i.i.d. from p(x) with mean µx and

variance σx both assumed finite. Statistical independence allows us to write

µXn = µx, σ2
Xn
=
σ2

x

n
, (2.9)

One observe that the variance (width of the probability distribution) shrinks according

to 1/
√

n as n grows. Moreover, we observe that the shape of Pn(Xn) becomes Gaus-

sian/normal asymptotically (regardless of the shape of the original distribution):

Pn(Xn)→ N(µx,
σ2

x

n
) =

√
n

√
2πσx

exp
(
−n

(Xn − µx)2

2σ2
x

)
. (2.10)

This statement, coined the central limit theorem, is one of the most important/fundamental

results of statistics – known under the name of the central limit theorem. Note, that for-

mula (2.10) describes the behaviour of Pn only in a |Xn − µXn | ≲ σXn vicinity of the mean,

while the details of the probability distribution may be controlled by other asymptotics

(of what is called the Cramer function or entropy function, see lecture notes for details).

Let us briefly sketch the proof of the theorem. It is convenient to change variables to

zi =

√
n(xi − µx)
σx

, Zn = n−1
n∑

i=1

zi =

√
n(Xn − µx)
σx

. (2.11)
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Obviously, µZn = µz = 0, σz =
√

n, and σZn = 1. The characteristic function of the

probability density Pn(Zn) is defined as

gn(k) = ⟨eikZn⟩ =

∫
dZnPn(Zn)eikZn , (2.12)

thus allowing the following representation

gn(k) =
∫

dz1dz2 . . . dzn p(z1)p(z2) . . . p(zn)eik(z1+z2+···+zn)/n = (2.13)

=

(∫
dzp(z)eikz/n

)n

= Gn(k/n). (2.14)

where G(k) is the characteristic function of p(z).

It follows from the definition of the characteristic function that at k → 0

G(k) = 1 −
σ2

z k2

2
+ O(k3) = 1 −

nk2

2
+ O(k3). (2.15)

Therefore,

gn(k) = Gn(k/n) ≈
(
1 −

k2

2n

)n

≈ exp
(
−

k2

2

)
, (2.16)

where we have exploited the identity limn→∞(1+ x/n)n = ex. One concludes that the char-

acteristic function of P(Zn) converges to characteristic function of a normal distribution

N(0, 1): P(Zn)→ N(0, 1) at n→ ∞.

Quite often real-world quantities of interest are sums of a large number of independent

random contributions. Then, CLT suggests that the resulting statistics are approximately

normal. For example, repeating coin flipping many times results in a normal distribution

for the total number of heads (or tails). The probability distribution of the total distance

covered by a Brownian particle will also approach the normal distribution asymptotically.

Exercise 2. Sum of uniformly distributed random variables

Find the probability distribution Pn(Xn) of the random variable Xn = n−1∑n
i=1 xi, where

n ≫ 1 and x1, x2, . . . , xn are sampled i.i.d from the continuous uniform distribution

p(x) =


1

b − a
, for a ≤ x ≤ b,

0, for x < a or x > b,

(2.17)

Solution: First, let us calculate the mean value µx and variance σ2
x of the uniformly

distributed random variable x

µx =

∫ +∞

−∞

xp(x)dx =
1

b − a

∫ b

a
xdx =

a + b
2

, (2.18)
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σ2
x =

∫ +∞

−∞

x2 p(x)dx − µ2
x =

1
b − a

∫ b

a
x2dx −

(a + b)2

4
=

(b − a)2

12
. (2.19)

Accordingly to the central limit theorem:

Pn(Xn)→
2
√

3n
√

2π(b − a)
exp

(
−6n

(Xn − (a + b)/2)2

(b − a)2

)
(2.20)

Exercise 3. Sum of Gaussian variables

Compute the probability distribution Pn(Xn) of the random variable Xn = n−1∑n
i=1 xi,

where x1, x2, . . . , xn are sampled i.i.d from the normal distribution (2.1) with µ = 0.

Solution: The characteristic function of the distribution Pn(Xn) is

gn(k) = Gn(k/n) = exp
(
iµk −

σ2k2

2n

)
, (2.21)

Its Fourier transform is

Pn(Xn) =

+∞∫
−∞

dk
2π
gn(k)e−ikXn =

+∞∫
−∞

dk
2π

exp
(
−ik(Xn − µ) − n

σ2k2

2

)
= (2.22)

=

√
n

√
2πσ

exp
(
−

n(Xn − µ)2

2σ2

)
. (2.23)

Exercise 4. Violation of the central limit theorem

Calculate the probability distribution Pn(Xn) of the random variable Xn = n−1∑n
i=1 xi,

where x1, x2, . . . , xn are independently chosen from a Cauchy distribution

p(x) =
γ

π

1
x2 + γ2 . (2.24)

Solution: The characteristic function of the Cauchy distribution is

G(k) =
γ

π

+∞∫
−∞

dx
x2 + γ2 eikx = e−γ|k|. (2.25)

The resulting characteristic functional expression is

gn(k) = Gn(k/n) = G(k). (2.26)

This expression shows that for any n the variable Xn is Cauchy-distributed with exactly

the same width parameter as the individual samples. The CLT is “violated” because we

have ignored an important requirement/condition for the CLT to hold – existence of the

variance (first and second moments).
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2.3 Multivariate Normal Distribution

Now let us consider M zero-mean random variables x1, x2, . . . , xM sampled i.i.d. from

a Gaussian distribution

p(x1, . . . , xM) =
1
N

exp
(
−

xiAi jx j

2

)
, (2.27)

where Â is the symmetric positive definite matrix. If the matrix is diagonal, then one

decomposes p(x1, . . . , xM) into a product and x1, x2, . . . , xM are statistically independent.

In general, making a proper orthogonal transformation one can diagonalise Â, thus

reducing the joint probability distribution into a product of independent Gaussians. There

are some manipulations/results which are straightforward. For example one derives the

normalization constant

N =
(2π)M/2

√
det A

, (2.28)

as well as generic expressions for the pair moments (correlation functions),

E[xix j] = A−1
i j . (2.29)

where Â−1 denotes the inverse matrix.

For the high order moments the following relations are valid

E[x1x2 . . . x2n] =
∑∏

E[xix j], (2.30)

E[x1x2 . . . x2n+1] = 0, (2.31)

Notice, that in Eq. (2.31) we simply sum over all possible pairs in the set x1, x2, . . . , x2n.

For example, Eq. (2.31) for the forth order moment transforms to

E[xix jxkxm] = E[xix j]E[xkxm] + E[xixk]E[x jxm] + E[xixm]E[x jxk]. (2.32)

In the probability theory, this result is known as the Isserlis’ theorem, while physicists

usually call it the Wick’s theorem.

Exercise 5. Joint probability distribution of the multivariate Gaussian variables

The joint probability distribution of two random variables x1 and x2 is

p(x1, x2) =
1
N

exp(−x2
1 − x1x2 − x2

2). (2.33)

(1) Calculate the normalization constant N.
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(2) Calculate the marginal probability p(x1).

(3) Calculate the conditional probability p(x1|x2).

(4) Calculate the statistical moments E[x2
1x2

2], E[x1x3
2], E[x4

1x2
2] and E[x4

1x4
2].

2.4 Problems

Problem 1. Assume that you play a dice game 50 times. Awards for the game are as

follows

1, 3 or 5: 0$

2 or 4: 2$

6: 26$

(1) Estimate expected value of winnings

(2) Estimate standard deviation of winnings

(3) Estimate probability of winning at least 200$

(4) Estimate the probability of winning at least 50$ more than your friend who is play-

ing the same dice game.

Problem 2. Geometric mean. Consider a random variable Xn = (
∏n

i=1 xi)1/n, where

the non-negative random variables x1, x2, . . . , xn are independently chosen from the prob-

ability distribution p(x). Find the probability distribution P(Xn) in the limit n→ ∞.

Problem 3. Consider two independent random variables x ≥ 0 and y ≥ 0 having the

probability densities p1(x) and p2(y), respectively. Find the probability distribution P(z)

of the random variable z = x + y.

Problem 4. Propose a pair of random variables x and y such that

• x and y are linearly uncorrelated, i.e. ⟨xy⟩ − ⟨x⟩⟨y⟩ = 0

• both have the same marginal normal distribution

• x and y are not jointly normally distributed



Chapter 3

The Bernoulli and Poisson Processes

A discrete stochastic process is simply a finite or infinite sequence of random vari-

ables. The examples include sequences of daily stock prices, scores in sport games, num-

ber of rainy days per month. If the random variables are time stamped in consecutive

order, then we call it the arrival process. An arrival is broadly defined as an event that can

be counted. For example, an arrival might refer to a service request, product order, device

failure, arrival of e-mail message, arrival of telephone calls, etc.

3.1 Bernoulli Process

Bernoulli variable b is a random variable which has only two possible outcomes: it

takes 1 (”success”) with probability p and otherwise 0 (”failure”) with probability q =

1 − p. The expected value of b and its variance are

E[b] = 1 × p + 0 × q = p, (3.1)

Var[b] = (1 − p)2 × p + (0 − p)2 × q = pq. (3.2)

Bernoulli process is a finite or infinite sequence of independent Bernoulli trials. In

the case of unfair coin a trail is represented by a random variable - taking ’head’ or ’tail’

with the probability p and 1 − p. The trials are independent because the coin does not

”remember” preceding trials.

Consider a random process consisting of N Bernoulli trials B = {b1, b2, . . . bN}. As

usual, we assume that the probabilities of bi = 1 and bi = 0, where 1 ≤ i ≤ N, are p and

q = 1 − p, respectively. Then, the probability B(n,N, p) to get exactly n successes in N

17
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trials is given by the so-called binomial distribution

B(n,N, p) =
N!

n!(N − n)!
pn(1 − p)N−n. (3.3)

Indeed, the probability to have n successes within the sequence of N trials is pnqN−n. Mul-

tiplying this expression by the binomial coefficient
(

N
n

)
, which takes into account different

ways to distribute successes, one obtains Eq. (3.3).

Next, we calculate the expected value and the variance of the random variable n

E[n] =
N∑

i=1

nB(n,N, p) =
N∑

i=1

(
N
n

)
npnqN−n = p

d
dp

N∑
i=1

(
N
n

)
pnqN−n =

= p
d

dp
(p + q)N = N p(p + q)N = pN, (3.4)

Var[n] =
N∑

i=1

n2B(n,N, p) − p2N2 =

N∑
i=1

(
N
n

)
n2 pnqN−n − p2N2 =

= p2 d2

dp2

N∑
i=1

(
N
n

)
pnqN−n + p

d
dp

N∑
i=1

(
N
n

)
pnqN−n − p2N2 =

= p2 d2

dp2 (p + q)N + p
d

dp
(p + q)N − p2N2 = pqN. (3.5)

Exercise 1.
Consider communication over a noisy channel with transmission rate of 1 symbol per

second. The probability of error in a given symbol is p and the errors occurs independently

for different symbols.

1) Denote as t1 the time of the first error. Calculate the expected value of t1.

2) Calculate the probability distribution P(tk), where tk is the time of the kth error.

3) Calculate the probability distribution of the number of errors n in a sequence

(packet) of length N.

4) Calculate the probability P that at least one symbol in in the packet of length N is

an error.

Solution:

Let us introduce a Bernoulli process b1, b2, . . . with probability p of success in each

trial. Here the success corresponds to emergence of error.

1) The probability distribution function P(t1) is given by the product of the probabili-

ties of t1 − 1 failures and one success

P(t1) = p(1 − p)t1−1. (3.6)
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Figure 3.1: Binomial probability mass function and normal probability density function

approximation for N = 20 and p = 0.5.

We obtained the so-called geometric distribution function. Then, the mean value of ti is

⟨ti⟩ =

∞∑
t1=1

tiP(ti) =
1
p
. (3.7)

2) To estimate P(tk) one multiply the probability of observing k−1 errors in the packet

of the first tk − 1 symbols by the probability of error in tkth symbol, i.e

P(tk) = pB(k − 1, tk − 1, p) =
(tk − 1)!

(k − 1)!(tk − k)!
pk(1 − p)tk−k. (3.8)

This result is known as the Pascal distribution.

3) It is easy to see that the number of successes n is given by the sum of N identically

distributed Bernoulli variables: n = b1 + b2 + · · · + bN . The central limit theorem tells us

that as long as N is sufficiently large, the probability distribution of n can be approximated

by a normal distribution

B(n,N, p) ≈ N(pN, p(1 − p)N) =
1√

2πpqN
exp

(
−

(n − pN)2

2pqN

)
.

The same result can be obtained directly from the binomial distribution (3.3) by exploit-

ing the Stirling formula. Figures represents B(n,N, p) in comparison with the normal

approximation N(pN, p(1 − p)N) for p = 0.5 and N = 20.

4) P = 1 − B(0,N, p) = 1 − (1 − p)N .
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3.2 Poisson Process

The Poisson process is used to model structureless and memoryless random arrivals in

continuous time. Standard example of a Poisson process is decay of radioactive nucleus

– number of decays/events/trials within a given time interval is described by the Poisson

distribution.

Consider N trials which are randomly distributed within the time interval [0,T ]. As-

sume that (1) each arrival is completely independent of other, and (2) the probability of

arrival within an infinitesimally small time slot dt is dt/T . Let us calculate the probability

P(n, t,T ) of n arrivals in some interval of duration t ≤ T . The probability to observe a

given arrival within this interval is t/T , while the probability that the arrival is out of this

interval is 1−t/T . Therefore, the probability that n arrivals took place is (t/T )n(1−t/T )N−n.

Taking into account all permutations in choosing n points from N slot one derives

P(n, t,T ) = B(n,N, t/T ) =
N!

n!(N − n)!

( t
T

)n (
1 −

t
T

)N−n
. (3.9)

Next let us analyze the limit N,T → ∞ assuming that the average rate, i.e. frequency of

arrivals, λ = N/T , is finite. One derives

P(n, t) =
(λt)n

n!
e−λt, (3.10)

which is known as the Poisson distribution. The sequence of trials which occur randomly

and independently from each other is called the Poisson point process.

Now we consider the distribution of the inter-arrival time in the previous example. Let

{t1, t2, . . . } be the ordered sequence of arrivals. Obviously, ti = T1 + T2 + · · ·+ Ti−1, where

Ti = ti+1 − ti is the inter-arrival time. Our goal is to calculate the probability density p(T )

of the positive random variable Ti. One observe that the following identity holds

∞∫
T

p(T ′)dT ′ = P(0,T ) = e−λT . (3.11)

The left hand side of this equation represents the probability that the inter-arrival time

is larger than T . This probability can be also written as the probability that there are no

arrivals within the interval of duration T . Therefore,

p(T ) = λe−λT . (3.12)
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We conclude that the Poisson process is characterized by the exponential distribution of

intervals between consecutive arrivals. The parameter λ is called the rate of the process.

An important property of the Poisson process (and of the Bernoulli process) is its

invariance with respect to mixing and splitting. The sum of two independent Poisson pro-

cesses with rates λ1 and λ2 is also the Poisson process with the rate λ1 + λ2. Analogously,

the Poisson process with rate λ can be split into two independent Poisson (sub)processes

with rates λ1 and λ2 = λ − λ1. The splitting can be performed by coin tossing: when an

arrival occur we toss a coin and with probability p and 1 − p add the arrival to the first

process or to the second process depending of the outcome. One derives, λ1 = pλ and

λ2 = (1 − p)λ.

Exercise 2.
Astronomers estimate that the meteors above a certain size hit the earth on average

once every 1000 years, and that the number of meteor hits follows a Poisson distribution.

1) What is the probability to observe at least one large meteor next year?

2) What is the probability of observing no meteor hits within the next 1000 years?

3) Calculate the probability distribution P(tn), where the random variable tn represents

the appearance time of the nth meteor.

Solution:

The probability of observing n meteors in a time interval t is given by

P(n, t) =
(λt)n

n!
e−λt, (3.13)

where λ = 0.001 (events per year) is the average hitting rate.

1) Pr(n > 0 meteors next year) = 1 − P(0, 1) = 1 − e−0.001 ≈ 0.001.

2) Pr(n = 0 meteors next 1000 years) = P(0, 1000) = e−1 ≈ 0.37.

3) It is intuitively clear that

(probability that tn > t) = (probability to get at least n − 1 arrivals in interval [0, t])

Therefore ∫ ∞

t
p(tn)dtn =

n−1∑
k=0

P(k, t). (3.14)

After simple algebra we obtain

p(tn) = −
d
dt

n−1∑
k=0

P(k, t)|t=tn =
λntn−1

n

(n − 1)!
e−λtn . (3.15)



22 The Bernoulli and Poisson Processes

Figure 3.2: Bernoulli process with very low frequency of successes p. The distribution of

the inter-arrival time t can be approximated by the Poisson distribution p(t) = pe−pt.

3.3 Law of Rare Events

The Poisson process can be thought of as a continuous version of the Bernoulli pro-

cess. Indeed, assume that the probability of success is very small, p ≪ 1. Then the

mean inter-arrival time is very large, 1/p ≫ 1. For the probability distribution of the

inter-arrival time one obtains

P(t) = p(1 − p)t−1 ≈ pe−pt. (3.16)

Therefore, rare successes within the sequence of Bernoulli trials can be modelled as Pois-

son events (and vice versa).

3.4 Problems

Problem 1.
Customers arrive at a store at the Poisson rate of 10 per hour. Each is either male or

female with the probability p and 1 − p, respectively.

1) Compute probability that that at least 20 customers have entered between 10 and

11 am.

2) Compute probability that exactly 10 woman entered between 10 and 11 am.

3) Compute the expected inter-arrival time of men.

4) Compute probability that there are no male customers between 2 and 4 pm.



Chapter 4

Finite Markov Chains. Efficient Mixing

Before we give a formal definition of a Markov Chain (MC), let us watch the intro-

duction video, which explains the origin of Markov chains and briefly describes what they

are.

A Markov chain p is a stochastic process with no memory other than of its current

state. We can think of a Markov chain as a random walk over a directed graph, where

vertices correspond to states and edges correspond to transitions between states. Each

edge i → j is associated with the probability p(i → j) of transition from the state i to the

state j. A useful interactive demo can be found here.

4.1 Properties of Markov Chains

We limit our discussion to the MC with a finite number of states. Two important

characteristics of a MC are irreducibility and aperiodicity. A Markov chain is called

irreducible, if regardless of its present state it reaches, as time progresses, any other state.

We call it aperiodic if for every state i there is t such that, for all t′ ≥ t, if we start at i

there is a nonzero probability of returning to i in t′ steps. Aperiodicity prevents us from

cycling periodically between two subsets of states and never settling down. Note that an

irreducible MC with at least one self-loop is always aperiodic. Adding a self-loop is the

easiest way to make an irreducible MC aperiodic.

Consider examples of MCs shown in Figure 4.1. The first example is reducible –

state ”C” is a trap which we reach in a finite time. In this case the stationary probability

distribution corresponds to P(C) = 1 , while the probability of finding the system in any

other state is zero. Irreducibility is needed to avoid the cases with such a degenerate

23

https://www.youtube.com/watch?feature=player_embedded&v=nT4DTYjFI_g
https://www.youtube.com/watch?feature=player_embedded&v=nT4DTYjFI_g
http://setosa.io/ev/markov-chains/
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(a) Reducible, Periodic
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(b) Irreducible, Periodic

Figure 4.1: Some examples of Markov chains.

(trapped) dynamic. The second example is irreducible, but it is periodic. If we start at

the state ”C”, we get back to the state in 3, 6, 9, . . . steps. As a consequence the periodic

system never forgets its initial state. One can say, that the state ”C” has a period = 3.

Formally, the period of state is a greatest common divisor of number of steps to return:

period(C) = gcd{n > 0 : Pr(Xn = C|X0 = C) > 0}. (4.1)

A MC is aperiodic, if and only if all its states have period = 1. The first example in

Fig. (4.1) is also periodic, since the state ”A” has period = 2. To make the second example

aperiodic one simply needs to add a self-loop to any of the states.

Any irreducible, aperiodic Markov chain with a finite number of states will converge

to a unique stationary probability distribution, no matter what initial states it starts in.

This property is called ergodicity, and all the Markov chains we will consider are ergodic.

The opposite statement is not true, the Markov chain 4.1a is a counterexample, it has a

stationary distribution and converges to it, but the MC is not irreducible and aperiodic.

Note also that some MCs have stationary distributions, but they do not converge to them.

The simplest example — periodic MC containing only two states. The stationary distri-

bution is P(A) = P(B) = 1/2, but if you start in the state ”A” you will return to it after

even number of steps.
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(a) Bernoulli Markov chain (b) Walking on Hypercube

Figure 4.2: Illustration of sampling idea.

4.2 Sampling

Markov chains are widely used to generate samples of some distribution. You can

imagine a particle which travels on your graph according to edges’ weights. After some

time (for ergodic chain) the probability distribution of a particle becomes stationary (one

say that the chain is mixed) and then the trajectory of the particle will represent the sample

of distribution. Analyzing the trajectory you can say a lot about distribution, e.g. calculate

moments and expectation values of functions.

In the Figure 4.2a you can see a Markov chain which corresponds to the Bernoulli

distribution with probability of success equal to 0.7. More complicated example is shown

in the Figure 4.2b. Imagine that you need to generate a random string of n bits. There is

2n possible configurations. You can organize these configurations in a hypercube graph.

The hypercube has 2n vertices and each vertex has n neighboors, corresponding to the

strings that differ from it at a single bit. Our Markov chain will walk along these edges

and flip one bit at a time. The trajectory after a long time will correspond to the series of

random strings. The important question is how long should we wait before our Markov

chain becomes mixed (loses a memory about initial condition)? To answer this question

we should look at the Markov chain from more mathematical point of view.

4.3 Stationary Distribution

The Markov process p is totally defined by a transition matrix (graph structure). Each

element of this matrix corresponds to the transition probability between two states. We
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Figure 4.3: Illustration of the detailed balance.

can write the current probability distribution as a column vector π and then

π(t + 1) = pπ(t). (4.2)

Since π is probability vector, then

∀i, πi ≥ 0,
∑

i

πi = 1. (4.3)

The total probability should be preserved, thus each column of p sums to 1, and all ele-

ments of p are nonnegative. Such a matrix is called stochastic. Note that eigenvalues of

stochastic matrix have modulus less or equal to 1. In addition, an irreducible stochastic

matrix possess a simple (non-degenerate) unit eigenvalue.

Let us consider the Markov chain, which is shown in the Figure 4.3. The transition

matrix is

p =


0 5/6 1/3

5/6 0 1/3

1/6 1/6 1/3

 , (4.4)

check that the matrix is stochastic. If the initial probability distribution is π(0), then the

distribution after t steps is

π(t) = ptπ(0). (4.5)
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As t increases, π(t) approaches a stationary distribution π∗ (since the Markov chain is

ergodic), such that

pπ∗ = π∗. (4.6)

Thus, π∗ is an eigenvector of p with eigenvalue 1, normalized according to the relation

(4.3). The matrix (4.4) has three eigenvalues λ1 = 1, λ2 = 1/6, λ3 = −5/6 and corre-

sponding eigenvectors are

π∗ =

(
2
5
,

2
5
,

1
5

)T

, u2 =

(
−

1
2
,−

1
2
, 1

)T

, u3 = (−1, 1, 0)T . (4.7)

Suppose that we start in the state ”A”, i.e. π(0) = (1, 0, 0)T . We can write the initial state

as a linear combination of eigenvectors

π(0) = π∗ −
u2

5
−

u3

2
, (4.8)

and then

π(t) = ptπ(0) = π∗ −
λt

2

5
u2 −

λt
3

2
u3. (4.9)

Since |λ2| < 1 and |λ3| < 1, then in the limit t → ∞ we obtain π(t) = π∗. The speed of

convergence is defined by the eigenvalue (λ2 or λ3), which has the greatest absolute value.

The considered situation is typical. According to the Perron-Frobenius Theorem
[5], an ergodic Markov chain with transition matrix p has a unique eigenvector π∗ with

eigenvalue 1, and all its other eigenvectors have eigenvalues with absolute value < 1. In

general case the transition matrix p can be defective — does not have a complete basis

of eigenvectors. But in this case the speed of convergence is also defined by the second

largest eigenvalue [8].

4.4 Detailed Balance

We say, that a distribution π satisfies the detailed balance condition, if for all pairs of

states i, j

πi p(i→ j) = π j p( j→ i). (4.10)

One can show, that if the distribution π satisfies detailed balance, then it is an p’s stationary

distribution, i.e. pπ = π. Indeed, let us sum the relation (4.10) over all states i:∑
i

p jiπi = (pπ) j =
∑

i

pi jπ j = π j, (4.11)
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where in the last equality we have used the fact that the matrix p is stochastic. Since j is

arbitrary state, we prove that pπ = π.

If the stationary distribution π∗ of a Markov chain satisfies the detailed balance, than

the Markov chain is called reversible. Check that the distribution π∗ from our example

(4.7) satisfies detailed balance. It’s worth noting that the detailed balance is sufficient,

but not necessary, for p to have π∗ as its stationary distribution. For instance, imagine

a random walk on a cycle, where we move clockwise with probability 2/3 and counter-

clockwise with probability 1/3. This Markov chain converges to the uniform distribution,

but it violates detailed balance.

A Markov chain is called symmetric, if p(i→ j) = p( j→ i) for all pairs of states i, j.

This is a special case of detailed balance, and in the case the stationary distribution π∗ is

uniform.

The detailed balance is not a necessary condition for the stationary distribution. The

necessary condition is a more common balance condition∑
j

(
pi jπ j − p jiπi

)
= 0, (4.12)

which means that the incoming probability flux to the state i should be equal to the out-

coming probability flux.

4.5 Efficient Mixing

Suppose that we want to modify a Markov chain, which is shown in the Figure 4.3.

We want to obtain a faster mixing, but we need to preserve the topology of the graph and

the stationary distribution. We can change the transition probabilities pi j, but we cannot

add a new edges to our graph. The problem is actual for some Markov Chain Monte Carlo

algorithms, which we will discuss further in the course.

Here I would like to illustrate the nice idea of mixing acceleration [9]. Let me start

with an analogy from the field of fluid mechanics. Consider mixing sugar in a cup of

coffee, which is similar to sampling, as long as the sugar particles have to explore the

entire interior of the cup (ergodicity of Markov chain). Detailed balance dynamics cor-

responds to the diffusion taking an enormous mixing time. Our everyday experience

suggests a better solution — enhance mixing with a spoon. Spoon steering generates an

out-of-equilibrium external flow which significantly accelerates mixing, while achieving
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Figure 4.4: Probability fluxes for the stationary distribution π∗ of the Markov chain shown

in the Figure 4.3. The case J = 0 corresponds to the detailed balance.

the same final result — uniform distribution of sugar concentration over the cup (in our

case — the same stationary distribution).

From the hydrodynamic point of view reversible Markov chains correspond to irro-

tational probability flows, while the violation of detailed balance relates to nonzero rota-

tional part, e.g. correspondent to vortices contained in the flow. To understand better, look

at the graph 4.4, where the edges’ weights correspond to the probability fluxes Qi j = pi jπ
∗
j.

We can violate the detailed balance by adding the flux J to the two cycles on our graph.

We should add the flux J to both cycles, because the modified transition matrix should be

stochastic. Since we know the stationary distribution π∗, we can calculate the modified

transition matrix corresponding to the case of the nonzero flux J:

p̃ =


0 5/6 − 5J/2 1/3 + 5J

5/6 + 5J/2 0 1/3 − 5J

1/6 − 5J/2 1/6 + 5J/2 1/3

 . (4.13)

Note that all elements of the stochastic matrix p̃ should be nonnegative, thus we obtain

the restriction on the intensity of the flux, |J| < 1/15.

Eigen values of the matrix (4.13) are given by expressions

λ1 = 1, λ2,3 =
1
6

(
−2 ± 3

√
1 − 125J2

)
. (4.14)
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The speed of mixing is defined by the value of W = minJ(|λ2|, |λ3|). Minimizing the

quantity, we find the optimal flux J2
opt = 1/125 and the value of Wopt = 1/3. Note that

we enhance the mixing in comparison with (4.4), while the steady distribution remains

unchanged.

4.6 Problems

Problem 1. Hardy-Weinberg Law. Consider an experiment with rabbits matting. Let

us follow evolution of a particular gene that appears in two types, G or g. A rabbit has a

pair of genes, either GG (dominant), Gg (hybrid — the order is irrelevant, so gG is the

same as Gg) or gg (recessive). In the result of a single mating the offspring inherits a gene

from each of its parents with equal probability. Thus, if a dominant parent (GG) mates

with a hybrid parent (Gg), the offspring is dominant with probability 1/2 or hybrid with

probability 1/2. Start with a rabbit of given character (GG, Gg, or gg) and assume that she

mates with a hybrid. The offspring produced again mates with a hybrid, and the process

is repeated for a number of generations.

1) Write down the transition matrix P of the Markov chain thus defined. Is the Markov

chain irreducible and aperiodic?

2) Assume that we start with a hybrid rabbit. Let µn be the probability distribution

of the character of the rabbit of the n-th generation. In other words, µn(GG), µn(Gg),

µn(gg) are the probabilities that the n-th generation rabbit is GG, Gg, or gg, respectively.

Compute µ1, µ2, µ3. Is there a some kind of law/rule emerging?

3) Calculate Pn for general n. How does the moment, µn, depend on n?

4) Calculate the stationary distribution of the Markov chain. Is detailed balance hold?

Note: The first experiment of such kind was conducted in 1858 by Gregor Mendel. He

started to breed garden peas in his monastery garden and analysed the offspring of these

matings.

Problem 2. You want to construct a Markov chain, which mixes in the shortest time

(regardless of the initial state). The state space contains N states, and desired stationary

distribution is the following: the probability to be in a state i equals to pi. What can you

say about eigenvalues of the corresponding transition matrix? Construct the transition

matrix explicitly.

Problem 3. Show that if M is stochastic, its eigenvalues obey |λ| ≤ 1. Hint: for a

vector v, let ∥v∥max denote maxi |vi|, and show that ∥Mv∥max ≤ ∥v∥max.
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Problem 4. Give an example of a Markov chain with an infinite number of states,

which is irreducible and aperiodic (prove it), but which does not converge to an equilib-

rium probability distribution.



Chapter 5

The Ising Model and Markov Chain
Monte Carlo

The Ising model was brought in as a mathematical model of ferromagnetism in sta-

tistical mechanics. In physics the traditional focus of the Ising’s model analysis is on the

phase transitions and, specifically, on finding and describing vicinity of the Curie point,

where the system transitions from a regular/ferromagnetic behavior at low temperatures

to the mixed/paramagnetic behavior at higher temperatures. However, more than 70 years

after its introduction multiple applications of the Ising model in areas like neuroscience,

machine learning, image analysis, economics, etc, were discovered. In this recitation we

focus on some principal issues related to simulations of the Ising models.

5.1 The Ising Model

Consider a graph where a spin si = ±1 pointed up or down is associated with node i.

We assume that energy of the spin system is a sum of local terms, measuring elongation

of spins with (local) magnetic field and terms representing pair-wise interaction of spins

E = −
∑
⟨i j⟩

Ji jsis j − µ
∑

j

s jh j, (5.1)

where the first sum is over pairs of sites i, j that are graph-neighbors, Ji j are the interaction

constants, µ is the magnetic moment, and h j is the magnetic field acting on the spin

position at the site j. Graphs common for physical applications are regular lattices. The

model also has multiple application in various engineering disciplines, where the case of

a regular lattice is rare.

32
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In the following we consider square lattice with periodic boundary conditions and

without external magnetic field. We will also assume in this running example the nearest

neighbors have the same interaction strength Ji j = 1. Overall, the system energy is

E = −
∑
⟨i j⟩

sis j. (5.2)

If we want to minimize energy E, we can point all spins in the same direction (ferromag-

netic model). But a system is not always in its lowest energy state — depending on the

temperature, its energy is sometimes higher. According to the Boltzmann distribution,

the equilibrium probability Peq(s) that a system is in a given state s is

Peq(s) =
1
Z

e−βE(s), Z =
∑

s

e−βE(s) (5.3)

where β = 1/T and Z is the normalization factor called the partition function. If T →

0, β → ∞, then Peq(s) is non-zero only at the lowest energy states. In the opposite limit

of T → ∞, β→ 0 all states are equally likely.

Let’s lump states with the same energy together into macrostates. Then the total

probability of being in a macrostate with energy E is

W
Z

e−βE =
1
Z

eS−βE =
1
Z

e−β(E−TS ), (5.4)

where W is the number of states in that macrostate. The quantity S = ln W is called the

entropy. The likeliest macrostate minimizes the free energy E − TS .

5.2 Direct Sampling (by Rejection)

Now suppose that we want to generate a random state of the Ising model, according

to the Boltzmann distribution (5.3). By generating a large number of such states, we can

estimate some physical quantity X, e.g. an average spin X = (1/N)
∑

i si, where N is a

number of spins in the system.

A naive approach is the direct brute-force sampling. We can enumerate all states,

calculate its energies, the partition function, and finally calculate the equilibrium proba-

bilities (5.3) of each state. Then we split interval [0, 1) in sections, and weight sections

according to the enumerated states. Finally we generate random variable ξ, uniformly

distributed over the [0, 1] interval, and associate each ξ with a state. The main problem

here is that our algorithm is exponential in the number of spins. If our lattice contains N
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spins then the number of possible states is 2N . So, in a system sufficiently large we will

not able to calculate the partition function and the set of equilibrium probabilities. The

direct sampling algorithm is exponential in the number of spins with respect both memory

(saving information about all the configurations) and the time (required to compute the

the partition function).

Possibly a better approach is the direct sampling by rejection. We can set each spin

randomly with equal probability, calculate energy E of the state and then accept it as a

sample with probability p = e−β(E−Emin) (we subtract Emin, so p ≤ 1). Now we do not need

to calculate the partition function, but we need to know the minimal possible value of the

energy Emin. In our simplified model it can be easily obtained theoretically (all spins have

the same direction). However, for almost all states p is exponentially small, so we would

have to generate an exponential number of trial states.

To construct better algorithm we should take into account the Boltzmann factor.

5.3 Metropolis-Hastings Sampling

We start from an arbitrary initial state and then perform a random walk in a state space

flipping one spin at a time. Think about the algorithm as of a Markov chain defined over

2N vertices of the hypercube. Choosing transition probabilities over the states carefully

one can guarantee that the stationary state of the Markov chain reproduces the Boltz-

mann distribution (5.3). The resulting algorithm works as follows: at each step one, first,

chooses the random site i, then compute what change ∆E in the energy would result if

we flipped si (while other spins are kept instant), then flip the spin si with the following

probability

p =

1, if ∆E < 0

e−β∆E, if ∆E ≥ 0.
(5.5)

This value is based on the detailed balance condition. Since our Markov chain is irre-

ducible and aperiodic (contains self-loops), it has unique stationary distribution. And

since the Boltzmann distribution (5.3) satisfies the detailed balance (check it), the end

result will be convergence to the stationary distribution.

Note that if the flip is rejected one accepts the current state as a new configuration.

This is the important difference with the previously discussed direct sampling by rejection.

There, rejected points are discarded and have no influence on the list of samples that
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Figure 5.1: Metropolis-Hastings Markov chain example for two spins

we collect. Here the rejection into the current state being added to the list again. To

understand the difference let us consider the Ising model (5.2) with only two spins. The

set of possible states contain only 4 states: −−,+−,−+,++. The energies of states are

−1, 1, 1,−1 correspondingly. The Markov chain is shown in the Figure 5.1. One can

check that the Boltzmann distribution 5.3 satisfies the detailed balance. If the rejected

configurations would be discarded the resulting distribution would be uniform.

The nontrivial question is how fast our Markov chain forgets about initial condition

(how fast it mixes). A rigorous analysis of this comprehensive question is beyond the

scope of this course. In practical implementations, you should continue the process till

convergence, which can be verified (empirically) by checking if the expectation we com-

pute has saturated (does not change any more). The time of convergence is (normally)

polynomial in the number of spins N. If rejections do not occur often, then one can esti-

mate mixing time following simple diffusion-in-the space state arguments. Consider two

states which are farthest apart, for example all spins up vs all spins down. One can walk

from one state to another in N steps — turning one spin at a time. Assuming that this

walk is as convoluted as the Brownian motion one estimates that it will take N2 steps to

cover the distance N. Thus the number of steps required to generate independent samples

is N2.

Implementation of the Metropolis-Hastings algorithm as well as some additional dis-

cussion can be found in the supplemented material to this seminar (see IJulia notebook).
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5.4 Gibbs Sampling

There are also other ways to enforce the detailed balance. Let us consider another

example, which is called the Gibbs sampling.

Starting from a state we pick a random site i and construct two possible configurations

(si = 1 and si = −1). Then we calculate the corresponding conditional (all spins except i

are fixed) probabilities p+ and p− according to the following equations

p+ + p− = 1, p+/p− = e−β∆E, (5.6)

where ∆E is the energy difference between the two configurations. Next, one accepts

the configuration si = 1 with the probability p+ or the configuration si = −1 with the

probability p−.

In this case our Markov chain is also defined over the hypercube. Let us check, that

the calculated probabilities (5.6) and the Boltzmann distribution (5.3) satisfies detailed

balance. The probability flux from the state with si = 1 to the state with si = −1 is equal

to

Q−+ =
1
Z

e−βE(si=1) p−, (5.7)

while the reversed probability flux is equal to

Q+− =
1
Z

e−βE(si=−1) p+. (5.8)

One finds that, indeed, the detailed balance is satisfied since Q−+ = Q+−. The spirit of

the Gibbs sampling is the same as in the Metropolis-Hastings Sampling. So, it is not

surprising that both algorithms have comparable characteristics (e.g. mixing time).

5.5 Problems

Problem 1. Consider the Ising model (5.2) on a square lattice (
√

N ×
√

N) with pe-

riodic boundary conditions. Using the Gibbs sampling method, calculate the dependence

of an average spin, ⟨s⟩ = (1/N)
∑

i si, on the inverse temperature β and plot it. What is the

critical temperature? Represent graphically the typical spin configurations below, above

and near the critical temperature.

Problem 2. Consider the infinite (thermodynamic limit) two-dimensional Ising model

and find the critical temperature analytically.
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Problem 3. Consider the infinite (thermodynamic limit) one-dimensional Ising model

and find the magnetization analytically. Is there a nontrivial critical point?

Problem 4. Spanning Trees. Let G be an undirected complete graph. A simple

MCMC algorithm to sample uniformly from the set of spanning trees of G is as follows:

Start with some spanning tree; add uniformly-at-random some edge from G (so that a

cycle forms); remove uniformly-at-random some link from this cycle; repeat. Suppose

now that the graph G is positively weighted, i.e., each edge e has some cost ce > 0.

Suggest an MCMC algorithm that samples from the set of spanning trees of G, with the

probability proportional to the overall weight of the spanning for the following cases: (i)

the weight of any sub-graph of G is the sum of costs of its edges; (ii) the weight of any sub-

graph of G is the product of costs of its edges. In addition, (iii) estimate the average weight

of a spanning tree using the algorithm of uniform sampling. Finally, (iv) implement all

the algorithms on some small (but non-trivial) weighted graph of your choice. Verify that

the algorithm converges to the right value.



Chapter 6

Queueing Systems

The queueing system model dynamical processes where individual particles/jobs ad-

vance through the system in a stochastic manner, also interacting via competition for re-

sources (availability of servers) [6, 3]. This setting is wide spread across many disciplines,

with main (traditional) applications being primarily in operation research, corresponding

to industrial processes at factories, customer service at shops, cinemas, parking areas, of-

fices and hospitals. Here we discuss basic ideas behind analysis and modelling of such

queueing systems.

6.1 Parking in the Area of unlimited capacity
(M/M/∞ queue)

Cars enter the area of unlimited capacity with rate λ and park. One describes the state

of the system at the moment of time t by the number of parked cars: M = {0, 1, 2, . . . }.

We will also assume that parking is modeled as another (after arrival) Poisson process.

Evolution of the system state is illustrated in Fig. (6.2), and described by the following

equation
dp0

dt
= −λp0 + µp1, (6.1)

dpn

dt
= λpn−1 − (λ + nµ)pn + (n + 1)µpn+1, for n ≥ 1, (6.2)

where pn is the probability of finding n cars parked at the moment of time t.

Eq. (6.2) can be solved recursively. The steady state solution is

pn =
1
n!

(
λ

µ

)n

exp
(
−
λ

µ

)
. (6.3)
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Figure 6.1: Markov Chain diagram showing evolution of the M/M/∞ system state.

Then the average number of cars is

⟨N⟩ =
∞∑

n=0

npn = exp
(
−
λ

µ

) ∞∑
n=0

1
(n − 1)!

(
λ

µ

)n

=
λ

µ
. (6.4)

In fact even the dynamical (transient) version of Eq. (6.3) can be integrated and ana-

lyzed. One derives

)pn(t) =
1
n!

(
(1 − e−µt)

λ

µ

)n

exp
(
−
λ

µ
(1 − e−µt)

)
, (6.5)

where one assumes that pn(0) = δn0, i.e. the queue was empty initially. Obviously, at

t → ∞ Eq. (6.5) converges to the steady-state distribution (6.3). The average number of

cars as a function of time is given by

⟨N(t)⟩ =
λ

µ
(1 − e−µt). (6.6)

6.2 Single Server Model (M/M/1)

Now let us shift to the queueing model describing processing of customers by a sin-

gle server/teller. This queuing system is known as M/M/1 system — where the notation

indicates that arrival and departure are both Markovian and the single server processes

one particle/job at a time. We assume that the server picks next customer from the queue

according to the first-come, first-served protocol. Other customers, which have already

arrived the system but were not yet served, are assumed waiting in line (waiting room) of

an infinite capacity (customers arriving the queue are newer rejected. Scheme of such an

M/M/1 system is shown in Fig. (6.2) and the respective Markov Chain, showing transi-

tions between states of the system, is shown in Fig. (6.3)
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Figure 6.2: Illustration of the M/M/1 queuing system.

Figure 6.3: State space (Markov Chain) diagram for the M/M/1 queue.

State of the M/M/1 system evolves according to the following equation

dp0

dt
= −λp0 + µp1, (6.7)

dpn

dt
= λpn−1 − (λ + µ)pn + µpn+1, for n ≥ 1, (6.8)

where pn is the probability to find exactly n customers in the queue at the time t. Steady

state solution of Eq. (6.8) is

pn = (1 − ρ)ρn. (6.9)

where ρ = λ/µ. Obviously, the steady state exists only when µ > λ. The expected length

of the queue is

⟨N⟩ = (1 − ρ)
∞∑

n=0

nρn =
λ

µ − λ
. (6.10)

Note that the length of the queue becomes infinite at λ = µ.

Assume that the system is initially in the state m, i.e. pn(0) = δnm with m customers in

the queue. Then probability that the system will be observed in the state n at the moment

of time t is

pn(t) = e−(λ+µ)t[ρ
n−m

2 In−m(at) + ρ
n−m−1

2 In+m+1(at) +

+(1 − ρ)ρn
∑

k=n+m+2

ρ
k
2 Ik(at)], (6.11)

where a = 2
√
µλ.

Exercise 1
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For the stationary M/M/1 queueing system with arrival rate λ and the service rate µ

compute

(i) probability that system is empty;

(ii) average number of customers in the waiting room;

(iii) average time in the waiting room;

(iv) average time in the system;

(v) probability density function for the time a customer spends in the system.

Solution:: (i) p0 = 1 − ρ.

(ii) ⟨Lq⟩ =
λ2

µ(µ−λ) .

(iii) ⟨Tq⟩ =
λ2

µ(µ−λ) .

(iv) ⟨T ⟩ = 1
µ−λ

.

(v) P(T ) = (µ − λ)e−(µ−λ)T .

6.3 Tandem Queue

Now let us briefly discuss the so-called tandem system consisting of two M/M/1

queues operating sequentially, as shown in Fig. (6.4). Here it is assumed that a particle/job

leaving the first queue immediately enters waiting room of the second queue, thus λ2 =

µ1. Therefore the tandem queue is characterized by three, generally distinct, parameters,

λ1, µ1, µ2 – the three Poisson rates.

Figure 6.4: A tandem queueing system.

We have already seen on example of a single M/M/1 queue that if the steady state

settles, i.e. if λ < µ, departures from the single M/M/1 system are Poisson with rate λ.

Since departures from the first queueing system turn into arrivals for the second queue,

then arrivals to the second queue are also Poisson with the same rate λ. Therefore one

concludes that if a steady state is established, the joint probability distribution p(n1, n2) to

find n1 and n2 customers in the first and second queues, respectively, is

p(n1, n2) = (1 − ρ1)(1 − ρ2)ρn1
1 ρ

n2
1 , (6.12)
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where ρ1 = λ/µ1 and ρ2 = λ/µ2. In other words, the tandem behaves as an independent

M/M/1 systems. The condition of the tandem stability (existence of the steady state) is

ρ1, ρ2 < 1.



Chapter 7

Brownian Motion

Brownian motion is the irregular motion of microscopic particles suspended in a fluid

resulting from their collision with surrounding molecules. Einstein’s paper [1] on Brow-

nian motion along with the related works by Langevin [4] and Smoluchowski [10] have

laid the foundation of the field of stochastic processes, later leading to a broad range of

applications in science and engineering. Below we examine properties of the inertialess

(or sometimes called overdamped), one-dimensional Brownian motion.

7.1 Langevin Equation

The inertialess, one-dimensional Brownian motion is described by the following stochas-

tic ordinary differential equation
dx
dt
= ξ(t), (7.1)

where x is the coordinate of the particle, and ξ(t) is the Gaussian white noise with zero

mean and the following pair correlation function, ⟨ξ(t1)ξ(t2)⟩ = 2Dδ(t1 − t2). Multivari-

ate generalization is a simple extension of the single variant process to a collection of

independent processes.

Integrating Eq. (7.1) directly one derives

x(t) = x(0) +

t∫
0

ξ(t′)dt′. (7.2)

In mathematics the random process x(t) given by Eq. (7.2) is usually called the Wiener

process. Let x(0) = 0. Since ⟨ξ(t)⟩ = 0 by assumption, then ⟨x(t)⟩ = 0. For the mean-
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Figure 7.1: An example of the telegraph process.

square displacement one derives

⟨x2(t)⟩ =

t∫
0

t∫
0

⟨ξ(t′)ξ(t′′)⟩dt′dt′′ = 2D

t∫
0

t∫
0

δ(t1 − t2)dt′dt′′ = 2Dt. (7.3)

This expression describes that the displacement of a Brownian particle in time t is diff-

isuive, i.e. it is not proportional to the elapsed time, but rather to its square root.

7.2 Temporal Discretization

Let us consider temporal discretization of Eq. (7.1) with time step ∆t so that xi

is the approximation of x(i∆t), where i = 0, 1, 2, .... Since in computer simulations

one cannot realize zero correlation time, the random process ξ should be modelled in a

discretized way. One option is to introduce a process whose correlation time is equal

to time step duration ∆t, see Fig 7.1. Specifically, the value of ξ inside of the i-th

time step is assumed to be a random constant ξi chosen from a normal distributions

g(ξi) = (2πσ2)−1/2 exp(−ξ2
i /2σ

2). Thus, the discrete-time equation of motion is as fol-

lows

xi+1 = xi + ξi∆t. (7.4)
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Assuming x0 = 0, one derives

⟨xn⟩ = ∆t
n−1∑
i=0

⟨ξi⟩ = 0, (7.5)

⟨x2
n⟩ = (∆t)2

n−1∑
i=0

n−1∑
j=0

⟨ξiξ j⟩ = (∆t)2
n−1∑
i=0

n−1∑
j=0

δi jσ
2 = nσ2(∆t)2. (7.6)

To ensure that the resulting process becomes in the continuous time limit the diffusion

process with the diffusion coefficient D, one requires that, ⟨x2
n⟩ = 2Dn∆t, and thus σ2 =

2D/∆t.

Note that, thanks to the low of large numbers (central limit theory, see lecture notes

and also chapter 2 of the recitation notes), one does have a flexibility in the choice of the

distribution of the time-discretized ξi. Indeed, since the particle displacement xn is a sum

of large number identically distributed independent random variables, the central limit

theorem guarantees that the resulting process, i.e. continuous time ξ, is Gaussian.

In numerical simulations it is easy to generate random variables ζi from the standard

normal distribution (µ = 0, σ = 1). In the terms of ζi the discrete equation of motion can

be written as

xi+1 = xi +
√

2D∆tζi. (7.7)

Some simulation examples/illustrations can be found in the supplemental material to this

seminar (see IJulia notebook).

7.3 Diffusion Equation

The probability density function (often we just say probability distribution, dropping

the word function) for the coordinate of a Brownian particle is defined as n(x, t) = ⟨δ(x −

x(t))⟩, where x(t) is a particular solution of Eq. (7.1) for a given realization of the noise.

The evolution of this probability density is described by the Fokker-Planck equation

∂tn = D∂2
xn, (7.8)

which is in this simple case is the diffusion equation. Obviously, n(x, t) can be inter-

preted as the particle concentration, if one deals with a large ensemble of identical non-

interacting Brownian particles. The diffusion equation (7.8) is invariant with respect to

the change x→ −x, but it is not invariant under the time reversal transformation, t → −t.
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We say that the resulting process is irreversible. In the result of the temporal evolution,

the probability density function broadens and become smoother, consistently with the

observation that at the maximum ∂2
xn < 0 and at the minimum ∂2

xn > 0.

To solve Eq. (7.8) in an unbounded (real) domain with some initial condition n(x, t =

0) one makes the Fourier transformation

n(x, t) =
∫ +∞

−∞

dk
2π

n(k, t)eikx, (7.9)

then to obtain ∂tn(k, t) = −Dk2n(k, t). Solution of the latter equation is n(k, t) = n(k, 0)e−Dk2t.

Note that the high-order harmonics attenuate faster — consistently with the earlier remark

that n(x, t) gets smoother in time. Transitioning back to the Fourier to the original space

(applying the inverse Fourier transform) one derives

n(x, t) =
∫ ∞

−∞

dk
2π

∫ ∞

−∞

dx′n(x′, 0)e−ikx′e−Dk2teikx

=

∫ +∞

−∞

G(x − x′, t)n(x′, 0)dx′,
(7.10)

where we have introduced the so-called Green function

G(x, t) =
1

√
4πDt

exp
[
−

x2

4Dt

]
. (7.11)

which describes the probability to observe the Brownian particle at the position x in time

t provided that at t = 0, x = 0.

7.4 Generating Function

In agreement with the results of the first part of this recitation, Eq. (7.11) states that

the mean-square displacement of a Brownian particle grows linearly with time:

⟨x2(t)⟩ =

+∞∫
−∞

x2G(x, t)dx = 2Dt. (7.12)

One may also be interested to compute high order moments of x. The simplest way to do

all these computations at once (for all moments) is to analyze the generating function

Z(λ, t) = ⟨eiλx(t)⟩ =

+∞∑
k=0

(iλ)n

n!
⟨xk⟩. (7.13)
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Using (7.11), one derives

Z(λ, t) =

+∞∫
−∞

eiλxG(x, t)dx = e−Dtλ2
. (7.14)

This result can also be obtained directly from diffusion equation (7.8). Indeed, it follows

from (7.8) and (7.13) that the time evolution of Z(λ, t) is described by, ∂tZ = −Dλ2Z,

supplemented by the initial condition, Z(λ, 0) = 1 (as x(0) = 0). Solving this equation

one arrives at the Eq. (7.14).

Now moments of x can be extracted from the Taylor expansion of (7.14) over λ. Ob-

viously, the odd moments are all zero, ⟨x2k+1⟩ = 0, while the even moments evolve in time

according to

⟨x2k⟩ =
(2k)!

k!
(Dt)k. (7.15)

7.5 Wall-Bounded Brownian Motion

Next, let us consider a Brownian particle constrained not to leave the positive semi-

plane, x > 0. Consider implementing this constraint in two different ways. One option is

to introduce the so-called totally absorbing boundary condition at x = 0

n(0, t) = 0, (7.16)

while the second option is to impose the so-called totally reflecting boundary condition

∂xn(0, t) = 0 (7.17)

Solution of the diffusion equation (7.8) with the boundary condition (7.16) and the δ-

function initial condition, n(x, 0) = δ(x − x0), becomes

na(x, t) = G(x − x0, t) −G(x + x0, t), (7.18)

where G is the Green function (7.11) of the diffusion equation in free-space. The solution

of the same initial value problem constrained by the boundary condition (7.17) is

nr(x, t) = G(x − x0, t) +G(x + x0, t). (7.19)

This method of derivation is called the image method.
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7.6 Forced Brownian Motion

Let us also discuss the (overdamped) Brownian motion influenced by an external po-

tential force, characterized by the potential U(x). Generalization of the free-force over-

damped Langevin equation describing this case is

dx
dt
= f + ξ, (7.20)

where f = −dU/dx. Then, the Fokker-Planck equation becomes

∂tn = D∂2
xn − ∂x( f n). (7.21)

The second term on the right-hand-side of Eq. (7.21) represents the drift of the particle

under action of the force f . In the case of the time-independent force the stationary

solution of Eq. (7.21) becomes

n0(x) ∝ exp
(
−

U(x)
D

)
. (7.22)

This is the famous Boltzmann-Gibbs (or just Gibbs, or just Boltzmann) distribution of the

equilibrium statistical physics. Here, intensity of the noise is proportional to the temper-

ature, D = kT , where k is the Boltzmann constant.

As an example let us consider evolution of a Brownian particle in the parabolic po-

tential, U(x) = γx2/2. In fact, this model applies broadly to the case of an overdamped

dynamics in the vicinity of a minimum (then, γ > 0) or maximum (then, γ < 0) of a

potential. To analyze this case one needs to solve

dx
dt
+ γx = ξ(t), (7.23)

which gets the following formal solution

x(t) = x(0)e−γt +

∫ t

0
ξ(t′)e−γ(t−t′)dt′. (7.24)

Let us assume that x(0) = 0. Then ⟨x(t)⟩ = 0 and

⟨x2(t)⟩ =
∫ t

0

∫ t

0
dt′dt′′⟨ξ(t′)ξ(t′′)⟩e−γ(t−t′)e−γ(t−t′′)

= 2De−2γt
∫ t

0

∫ t

0
dt′dt′′δ(t′ − t′′)eγ(t′+t′′) =

D
γ

(1 − e−2γt).
(7.25)
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At sufficiently short times, t ≪ 1/γ, the dynamics is purely diffusive, ⟨x2(t)⟩ ≃ 2Dt, since

the particle does not feel the potential, while at the longer times, t ≫ 1/γ, the dispersion

(spread of the distribution) saturates, ⟨x2(t)⟩ ≃ D/γ.

In this case the Fokker-Planck equation, ∂tn = (γ∂xx+D∂2
x)n, should be supplemented

by the initial condition n(x, 0) = δ(x). Then, solution (for the Green function) becomes

n(x, t) =
1√

2π⟨x2(t)⟩
exp

[
−

x2

2⟨x2(t)⟩

]
. (7.26)

Meaning of the latter expression is clear: the probability function n(x, t) is Gaussian,

but the dispersion is time-dependent. Related numerical simulations can be found in the

supplemental material to this recitation (see IJulia notebook).

7.7 Problems

Problem 1. High-order moments. Prove that the moments, ⟨x2k(t)⟩, for the Brownian

motion in an unbounded one-dimensional space obey the following recurrent equation

∂t⟨x2k⟩ = 2k(2k − 1)D⟨x2(k−1)⟩. (7.27)

Solve this equation for a particle which starts at the origin, x = 0, at t = 0.

Problem 2. Brownian motion confined to parabolic potential. The probability density,

n(x, t), of a Brownian particles confiend to potential, U(x) = αx2/2, is described by

D∂2
xn + α∂x(xn) = ∂tn. (7.28)

Calculate the moments ⟨xk(t)⟩ under condition that n(z, 0) = δ(x).

Problem 3. Self-propelled particle. The term ”self-propelled particle” refers to an

object capable of moving actively by gaining energy from the environment. Examples of

such objects range from the Brownian motors and motile cells to macroscopic animals

and mobile robots. The simplest two-dimensional model of a self-propelled particle is the

one moving within the plane with a fixed speed v0. Here the Cartesian components of the

particle velocity vx, vy, stated in polar coordinates are

vx = v0 cosφ, vy = v0 sinφ, (7.29)

where the polar angle φ defines the direction of motion. Let us assume that φ evolves

accordingly to the stochastic equation

dφ
dt
= ξ, (7.30)
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where ξ(t) stands for the Gaussian white noise with zero mean and variance, ⟨ξ(t1)ξ(t2)⟩ =

2Dδ(t1 − t2). The initial condition are chosen to be φ(0) = 0, x(0) = 0 and y(0) = 0.

(i) Calculate ⟨x(t)⟩, ⟨y(t)⟩.

(ii) Calculate ⟨r2(t)⟩ = ⟨x2(t)⟩ + ⟨y2(t)⟩.

Problem 4. Elementary Diffusion.

Consider a particle jumping over nodes of the one-dimensional chain, where the states

are labeled n = 0,±1,±2, . . . . Left and right jumps are performed with the rates µ and λ

respectively. Assume that at the moment of time t = 0 the particle was located at the node

n = 0.

(i) Using any programming language perform and illustrate a sample of a particle

path/trajectory.

(ii) Find P(n, t) numerically, where P(n, t) is the probability to observe a particle at the

position n at the moment of time t. In order to simulate the particle motion split the time

axis into discrete intervals and for any time step implement decision (on where to move

next) according to the rates.

(iii) Solve (ii) analytically by solving the master equation, which is stated in continu-

ous time as follows (this is a discrete space analog of the Fokker-Planck equation),

∂tP(n, t) = −(λ + µ)P(n, t) + µP(n + 1, t) + λP(n − 1, t). (7.31)

(iv) Replace a discrete variable n in this equation by a continuous variable x. Under

what assumptions can you do it? Solve the resulting (continuous time, continuous space)

equation analytically and compare the result with the simulations performed in (ii).

Hint: if λ = µ then the right-hand side is just λ∂2
xP(x, t).

(v) For the original case of discrete space and setting λ = 0, solve the problem exactly.

Compare the solution with (proper version of) the simulations performed in (ii).



Chapter 8

First Passage Problems

Key words: first-passage probability, first-passage time, survival probability, Kramers

escape rate.

In this recitation we discuss situation when a stochastic variable (say temperature,

mechanical stress, voltage etc.), descriptive of the state of the system, reaches a critical

value/threshold where the system undergoes a dramatic change, call it the failure. Then,

an important question is how to estimate the expected time, so-called the f irst passage
time, for the system to cross the threshold first time [7]. Complementarily one is also

interested to estimate probability, so called survival probability, that the system does not

cross the threshold in time t.

8.1 First passage problem for Bernoulli processes

In fact, this subject is not new for us, as some simple examples of the first-passage

problems were already discussed in the lectures and recitations (e.g., see exercises 3.1(1)

and 3.2(3) of the recitation #5). Let us recall the story stated in the context of the Bernoulli

random process which occurs with the probability (of success) p. Here, we define the

first-passage time T as the time when a failure occurs for the first time. The probability

distribution of the Bernoulli failure to occur first time at the time T is

P(T ) = pT−1(1 − p). (8.1)

Then, the mean first passage time is

⟨T ⟩ =
∞∑

T=1

T p(T ) =
1

1 − p
. (8.2)

51
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The survival probability P(t), that is the probability that there have been no failure up

to the time t, obeys the following equation

(survival probability at time t) = (probability that T > t). (8.3)

Therefore

P(t) =
∞∑

Ti=t+1

p(Ti). (8.4)

8.2 First-passage problem for 1d Brownian motion

In the theory of Brownian motion an exemplary first passage problem of interest re-

lates to computing time when a particle, initially positioned at x = x0, gets to the origin,

x = 0, the first time. The survival probability can then be stated as the probability that the

particle did not visit the origin for the time t.

In numerical simulation the mean first passage time and survival probability can be

both calculated by averaging over different realizations of the Brownian motion process.

Consider an ensemble of N0 ≫ 1 non-interacting Brownian particles placed initially at

x0, i.e xi(0) = x0 where i = 1, 2, . . .N0. We should track the independent stochastic

trajectories, xi(t), of each particle and measure the time Ti for a particle to reach the

origin for the first time, x(Ti = 0) and xi(t < Ti) > 0. Then, the mean first-passage time T

is just the mean value of the first passage time of a particle:

⟨T ⟩ =
1
N

N∑
i=1

Ti. (8.5)

Assuming that a particle is removed from the system (dies) when it reaches the origin

first time the survival probability becomes

P(t) =
N(t)
N0

, (8.6)

where N(t) is the number of particles which did not get to the origin by the time t.

How to describe the first passage properties of the Brownian motion analytically? It

is quite difficult from the perspective of the Langevin equation: one can write an exact

expression for particle trajectory for any particular realization of noise, but it remains un-

clear how to extract information about the first passage. Fortunately, the problem becomes

tractable in the framework of the Fokker-Planck formalism.
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Indeed, the probability distribution of a particle coordinate satisfies the diffusion equa-

tion

∂tn = D∂2
xn, (8.7)

where n(x, 0) = δ(x − x0) is chosen for the initial condition. To reflect the fact that we

are not interested to track the particle after it visits x = 0 one can simply set the zero

boundary condition for the probability density at the time of the first crossing

n(0, t) = 0, (8.8)

providing perfect absorbtion at the origin.

Eqs.(8.7,8.8) are solved by the image method

n(x, t) =
1

√
4πDt

[
exp

(
−

(x − x0)2

4Dt

)
− exp

(
−

(x + x0)2

4Dt

)]
. (8.9)

Which then allows to get the following expression for survival probability

P(t) =

+∞∫
0

n(x, t)dx =
2
√
π

x0/2
√

Dt∫
0

dξe−ξ
2
= erf

(
x0

2
√

Dt

)
. (8.10)

Exploiting the rule (8.3), one obtains

P(t) =

+∞∫
t

p(T )dT, (8.11)

where p(T ) is the probability density of the first passage distribution. Then

p(t) = −
dp(t)

dt
=

x0

2
√
πDt3/2

exp
(
−

x2
0

4Dt

)
. (8.12)

Since the integral
∫ +∞

0
tP(t)dt diverges, the mean first passage time is infinite. The typical

(most probable) first passage time is defined as a time when p(t) is at a maximum (dp/dt =

0), i.e. T = x2
0/6D.

Exercise 2. First passage with two thresholds

The random process x(t) is governed by the following stochastic equation

dx
dt
= ξ, (8.13)

where ξ is zero-mean Gaussian white noise with pair correlation ⟨ξ(t1)ξ(t2)⟩ = 2Dδ(t1−t2).

We assume that the particle is removed once it reaches x(t) = 0 or x(t) = L starting from

the initial value x(0) = l.
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1) Calculate the survival probability P(t).

2) Calculate the probability distribution p(T ) of the lifetime T .

3) Calculate the mean lifetime ⟨T ⟩.

Solution:

The probability distribution n(x, t) of a random variable x is recovered through solving

the following initial value problem

∂tn = D∂2
xn, (8.14)

n(x, 0) = δ(x − l), (8.15)

n(0, t) = n(L, t) = 0. (8.16)

Then, utilizing the Fourier transform technique, one derives

n(x, t) =
2
L

∞∑
k=1

exp
(
−
π2k2D

L2 t
)

sin
(
πk
L

l
)

sin
(
πk
L

x
)
. (8.17)

1) The survival probability:

P(t) =

∞∫
0

n(x, t)dx =
2
π

∞∑
k=1

1 − (−1)k

k
sin

πkl
L

exp
(
−
π2k2D

L2 t
)
. (8.18)

2) Probability distribution of the lifetime:

p(T ) = −
dp
dt
|t=T =

2πD
L2

∞∑
k=1

(1 − (−1)k)k sin
πkl
L

exp
(
−
π2k2D

L2 T
)
. (8.19)

3) Mean lifetime:

⟨T ⟩ =

∞∫
0

T p(T )dT =
2
π3

L2

D

+∞∑
k=1

1 − (−1)k

k3 sin
πkl
L
=

l(L − l)
2D

. (8.20)

8.3 Escape rate over barrier

In the previous section we have discussed the first passage properties of the free Brow-

nian motion. Now let us see what happens in the presence of an external potential/barrier.

We are interested to understand how diffusion forces the particle to cross the barrier.

The Langevin equation for a Brownian particle in potential U(x) is

dx
dt
= f + ξ, (8.21)



8.3 Escape rate over barrier 55

Figure 8.1: Potential energy as a function of particle coordinate in two typical cases: a)

potential that allows escape to infinity; b) bistable potential.

where f = −dU/dx. Then corresponding Fokker-Planck equation is

∂tn = D∂2
xn − ∂x( f n). (8.22)

The second term at the rhs represents the drift of the particle under action of the force f .

The stationary, zero flux solution of Eq. (8.22) is ∝ exp(−U(x)/D). For the potential

which is shown in Fig. 8.1 a, this solution is non-normalizable and, therefore, it cannot

describe the probability density. The equilibrium probability distribution does not exist,

since a particle placed in point A will escape from a potential well over a barrier. It is

interesting to calculate the escape time, i.e. the time the Brownian particle will need to go

from A to B. This first-passage problem is known as the Kramers problem.

Let us consider the case of a very deep (potential) well. Namely, we assume that

the mean thermal energy of the particle is much smaller than the height of the barrier,

∆U ≫ D. The typical noise intensity is not sufficient to drive the particle over the barrier

and thus the particle may escape the well only in the result of a rare fluctuation of large

amplitude. This rare event feature of the process also suggests that the time scales are

well separated: the escape time is much longer than the time it takes to equilibrate around

a metastable minima. However the longer one waits the more probable to observe the

escape. It can be shown that the probability to escape is exponential in time

p(t) = exp(−Γt). (8.23)

This means that escape is a Poisson event. The escape rate Γ is given by the Kramers

formula

Γ =
ωAωB

2π
exp

(
−
∆U
D

)
, (8.24)
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where

ωA =

√
−

d2U(x2
A)

dx
, ωB =

√
−

d2U(xB)
dx2

B

. (8.25)

Exercise 3.
Assume that a Brownian particle is placed initially at the left local minimum of the

bistable potential which is shown in Fig. 8.1 b. Calculate the probabilities pL(t)/pR(t) to

find the particle at the left/right well.

Solution:

If ∆UL,∆UR ≫ D, then the particle spends most of the time in the vicinities of the

local minimums, A and C. Jumps between two meta-stable states are Poisson events with

non-equal rates

ΓLR =
ωAωB

2π
exp

(
−
∆UL

D

)
, (8.26)

ΓRL =
ωCωB

2π
exp

(
−
∆UR

D

)
. (8.27)

The system can be modeled with a two-state Markov chain

dpL

dt
= −ΓLR pL + ΓRL pR, (8.28)

dpR

dt
= ΓLR pL − ΓRL pR. (8.29)

Solution:

8.4 Problems

Problem 1. Mortal Brownian particle

Unstable Brownian particle moves in the interval 0 < x < L between two absorbing

walls starting from the initial position x0. The decay (disappearance) rate of the particle

is α and the diffusion coefficient is D.

1) Find the expected lifetime of the particle analytically and by direct numerical sim-

ulations.

2) Calculate the survival probability p(t) of the particle analytically.

3) What is the probability that the particle will be absorbed before it decays? Answer

this question analytically or numerically.
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4) Find analytically the probability that the particle will be absorbed at the left wall

rather than at the right wall.

(Hint: The probability distribution of an unstable Brownian particle is described by

the equation ∂tn = D∂2
xn − αn.)

Problem 2. Stochastic resonance

Consider a Brownian particle moving in a periodically modulated bistable potential

U(x) =
x4

4
−

ax2

2
− εx cos νt, (8.30)

where a > 0 and ε ≪ a3. The diffusion coefficient is small in comparison with the height

of the potential barrier, D ≪ a4.

1) Calculate the transition rates ΓLR(t) and ΓRL(t) between two metastable states.

2) Show that at sufficiently large time the probabilities, pL(t) and pR(t), to find the

particle at the left/right well is estimated as follows

pL(t) =
1
2
− A cos(νt + ϕ0), pR(t) =

1
2
− A cos(νt + ϕ0). (8.31)

Calculate the phase ϕ and the amplitude A in the leading order in ε.

3) Plot the amplitude A as a function of the diffusivity D for a = 1, ν = 2π×10−5. The

curve has a pronounced maximum for an intermediate value D = D0. Find D0.

4) Perform numerical simulation of particle motion for a = 1, ν = 2π × 10−5 and

D = D0. Show 10 realizations of the sequence of the first 100 transition events at the

same plot.

Problem 3. First-turn probability

Position x of a randomly accelerated particle obeys the equation

d2x
dt2 = ξ, (8.32)

where ξ(t) is the Gaussian white noise with zero mean and variance

⟨ξ(t1)ξ(t2)⟩ = 2Dδ(t1 − t2). (8.33)

Let us assume that the particle starts its motion at t = 0 with initial velocity v(0) = v0 > 0.

Calculate the probability P(t) that v(τ) > 0 for any τ ∈ [0, t].



Chapter 9

Entropy. Mutual Information.
Probabilistic Inequalities

keywords: self-information, entropy, conditional entropy, mutual information, com-

munication channel, capacity of channel

9.1 Entropy

Let us consider a discrete random variable x ∈ X where X = {x1, . . . , xn} and P(x), as

usual, is the probability mass function. The information content or self-information of

an observation xi is

s(xi) = − log2 P(xi). (9.1)

We see that the smaller the probability of the outcome, the larger its self-information.

Intuitively, s(xi) represents the ”surprise” of seeing the outcome xi.

The entropy of the random variable x is defined as the expected value of its self-

information

S (X) = E[s(x)] = −
n∑

i=1

P(xi) log2 P(xi). (9.2)

The unit of entropy can be referred to as a ”bit” or a ”shannon”.

It is straightforward to prove that

- S (X) ≥ 0 and S (X) = 0 if and only if (iff) the variable X is deterministic,

i.e. a single outcome/state happens with the probability one;

- S (X) ≤ log2 n and S (X) = log2 n iff all the outcomes are equiprobable.
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Figure 9.1: Entropy of the Bernoulli distribution as a function of the success rate, p.

This properties allow us to interpret entropy as a measure of uncertainty of the random

variable x. The smaller the entropy, the larger predictability of the random process. The

maximum uncertainty corresponds to the case when all outcomes have the same probabil-

ity, while the minimum uncertainty occurs when the process is completely deterministic.

For the sake of illustration, let us consider the Bernoulli distribution – outcome of a

potentially unfair coin tossing, where p and q = 1 − p are the probabilities of observing

head and tail respectively. According to the definition (9.2)

S binary(p) = −p log2 p − (1 − p) log2(1 − p) (9.3)

Entropy achieves its maximum at p = q = 1/2 – which is the most uncertain case. The

minimum uncertainty corresponds to the case p = 1 or q = 1 when the outcome of each

trial is completely deterministic.

The joint entropy of a pair of discrete variables x ∈ X and y ∈ Y is

S (X,Y) = −
nX∑
i=1

nY∑
j=1

P(xi, y j) log2 P(xi, y j). (9.4)

The entropy is additive for independent random variables: S (X,Y) = S (X) + S (Y) if

P(x, y) = P(x)P(y).
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Finally, the conditional entropy is defined as

S (Y |X) =
nX∑
i=1

P(xi)S (Y |xi) = −
nX∑
i=1

P(xi)
nY∑
j=1

P(y j|xi) log2 P(y j|xi) =

= −

nX∑
i=1

nY∑
j=1

P(xi, y j) log2 P(y j|xi) = −
nX∑
i=1

nY∑
j=1

P(xi, y j) log2
P(xi, y j)

P(xi)
. (9.5)

Note, that S (Y |X) , S (X|Y).

Exercise 1: Properties of entropy.

Prove that S (X) ≤ log2 n, where n is the number of possible values of the random

variable x ∈ X.

Solution:

The simplest proof is via Jensen’s inequality. It states that if f is a convex function

and u is a random variable then

E[ f (u)] ≥ f [E(u)]. (9.6)

Let us define

f (u) = − log2 u, u = 1/P(x). (9.7)

Obviously, f (u) is convex. Accordingly to (9.6) one obtains

E[log2 P(x)] ≥ − log2 E[1/P(x)], (9.8)

where E[log2 P(x)] = −S (X) and E[1/P(x)] = n, so S (X) ≤ log2 n.

The Jenson’s inequality leads to a number of consequences for entropy, for example

S (X|Y) ≤ S (X) with equality iff Xand Yare independent, (9.9)

S (X1, . . . , Xn) ≤
n∑

i=1

S (Xi) with equality iff Xi are independent. (9.10)

Exercise 2: Entropy of the English language.

The so called Zipf’s law states that the frequency of the n-th most frequent word in

randomly chosen English document can be approximated by

pn =

 0.1
n , for n ∈ 1, . . . , 12367

0, for n > 12367
(9.11)

Under an assumption that English documents are generated by picking words at random

according to Eq. (9.11) compute the entropy of the made-up English (per word).
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Figure 9.2: Illustration of the relations between joint entropy, marginal entropies, condi-

tional entropies and mutual information.

Solution:

Substituting the distribution (9.11) into Eq. (9.2) one derives

S = −
12367∑

i=1

0.1
n

log2
0.1
n
≈

0.1
ln 2

123670∫
10

ln x
x

dx = (9.12)

=
1

20 ln 2
(ln2 123670 − ln2 10) ≈ 9.9 bits. (9.13)

Perform the summation numerically and compare the exact result with the estimate.

Let us also calculate the entropy of English per character. The resulting entropy is

fairly low ∼ 1 bit. Thus, the character-based entropy of a typical English text is much

smaller that its entropy per word. This result is intuitively clear: after the first few letters

one can often guess the rest of the word, but prediction of the next word in the sentence

is a less trivial task.

9.2 Mutual Information

The mutual information of two random variables x and y, characterized by their joint

distribution function, P(x, y), and the marginal single-valued distribution functions, P(x)

and P(y), is defined as follows

I(X; Y) = EP(x,y)

[
log2

P(x, y)
P(x)P(y)

]
=

nX∑
i=1

nY∑
j=1

P(xi, y j) log2
P(xi, y j)

P(x j)P(y j)
. (9.14)

We can also express I(X; Y) in terms of respective entropies as follows

I(X; Y) = S (X) − S (X|Y) = S (Y) − S (Y |X) = S (X) + S (Y) − S (X,Y). (9.15)

It is easy to see that I(X,Y) ≥ 0, I(X,Y) = I(Y, X) and I(X, X) = S (X).
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P(x, y) X P(y)

x1 x2 x3 x4

Y

y1 1/8 1/16 1/32 1/32 1/4

y2 1/16 1/8 1/32 1/32 1/4

y3 1/16 1/16 1/16 1/16 1/4

y4 1/4 0 0 0 1/4

P(x) 1/2 1/4 1/8 1/8

Table 9.1: Exemplary joint probability distribution function P(x, y) and the marginal prob-

ability distributions, P(x), P(y), of the random variables x and y.

Mutual information is a measure of the mutual dependence between two random

variables. In other words, it quantifies how much knowing one of these variables re-

duces uncertainty about the other. Say, if x and y are statistically independent, i.e.

P(x, y) = P(x)P(y), then mutual information is zero: knowing x does not give any infor-

mation about y. In contrast, when y is deterministic function of x, the mutual information

is maximum and equals to the entropy of x (or y), since knowing the value of x completely

determines y.

Exercise 3: Joint and Marginal entropies. Mutual information.

The joint probability distribution P(x, y) of two random variables X and Y is described

in Table 9.1. Calculate the marginal probabilities P(x) and P(y), conditional probabilities

P(x|y) and P(y|x), marginal entropies S (X) and S (Y), as well as the mutual information

I(X; Y).

Solution:

The probability of xi is given by

P(xi) =
4∑

j=1

P(xi, y j). (9.16)

The marginal probabilities P(x) and P(y) are described in the Table 9.1.

Next, the single-valued marginal entropies become

S (X) = −
1
2

log2
1
2
−

1
4

log2
1
4
−

1
8

log2
1
8
−

1
8

log2
1
8
=

7
4

bits, (9.17)

S (Y) = −4 ×
1
4

log2
1
4
= 2 bits. (9.18)
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P(x|y) X

x1 x2 x3 x4

Y

y1 1/2 1/4 1/8 1/8

y2 1/4 1/2 1/8 1/8

y3 1/4 1/4 1/4 1/4

y4 1 0 0 0

Table 9.2: Conditional probability function P(x|y) for the case discussed in the exercise #

3.

The conditional probability P(x|y) is

P(x|y) =
P(x, y)
P(y)

, (9.19)

and the conditional entropy of x given y = yi is

S (X|y = yi) = −
4∑

j=1

P(x j|yi) log2 P(x j|yi). (9.20)

The results are also presented in the Table 9.2.

Now we are ready to compute the conditional entropy of X given Y:

S (X|Y) =
4∑

i=1

P(yi)S (X|y = yi) =
11
8

bits, (9.21)

and the mutual information

I(X; Y) = S (X) − S (X|Y) =
7
4
−

11
8
=

3
8

bits. (9.22)

9.3 Communications Over a Noise Channel

Here we consider communication over a noisy channel. A discrete memoryless chan-

nel Q is characterized by an in input alphabet AX = {x1, . . . , xnX }, output alphabet AY =

{y1, . . . , ynY }, and a set of transition probabilities P(y j|xi), which describes the probability

to receive y = y j as an output provided that the input was x = xi. We assume that the input

is a random sequence of symbolsAX distributed according to the probability distribution

function P(x).
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Figure 9.3: Examples of communication channels.

The capacity of a channel Q is defined as

C(Q) = max
P(X)

I(X; Y). (9.23)

where I(X; Y) is the mutual entropy of input and output.

Let us consider a couple of standard examples of noisy channels.

1. Binary symmetric channel
In the case of the Binary Symmetric Channel (BSC), AX = AY = {0, 1}, i.e. both

input and output alphabets are binary. When the input is 0, the output is 0 or 1 with the

probabilities f and 1 − f , respectively, see Fig. (9.3) for illustration. If input is 1, the

output can be 0 with the probability f or 1 with the probability 1 − f :

P(y = 0|x = 0) = 1 − f , P(y = 0|x = 1) = f , (9.24)

P(y = 1|x = 0) = f , P(y = 1|x = 1) = 1 − f . (9.25)

2. Binary erasure channel
Alphabets: AX = {0, 1},AY = {0, ?, 1}

Transition probabilities:

P(y = 0|x = 0) = 1 − f , P(y = 0|x = 1) = f , (9.26)

P(y =?|x = 0) = f , P(y =?|x = 1) = f , (9.27)

P(y = 1|x = 0) = 0, P(y = 1|x = 1) = 1 − f . (9.28)

3. Z channel
Alphabets: AX = AY = {0, 1}

Transition probabilities:

P(y = 0|x = 0) = 1, P(y = 0|x = 1) = f , (9.29)

P(y = 1|x = 0) = 0, P(y = 1|x = 1) = 1 − f . (9.30)
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Exercise 4: Binary Symmetric Channel

Consider a BSC with the error probability, f = 0.15, and the following input proba-

bility distribution: P(x = 0) = 0.9, P(x = 1) = 0.1. In other words, the input signal is a

Bernoulli process with p = 0.1.

1) Calculate the output probability distribution, P(y).

2) Compute the probability x = 1 given y = 1.

3) Compute the mutual information I(X; Y).

4) What is the capacity of the channel as a function of f ?

Solution:

1) From the relation

P(y) =
nX∑
j=1

P(y|x j)P(x j) (9.31)

we derive P(y = 1) = P(y = 1|x = 0)P(x = 0) + P(y = 1|x = 1)P(x = 1) = 0.15 × 0.9 +

0.85 × 0.1 = 0.22 and P(y = 0) = 1 − P(y = 1) = 0.78.

2) If y is received, we do not know for sure what was an input symbol x. Can one

infer the input given the output? The conditional probability P(x|y) gives the posterior

distribution of the input symbol x.

In accordance with the Bayes’ theorem

P(x|y) =
P(y|x)P(x)

P(y)
=

P(y|x)P(y)∑nX
j=1 P(y|x j)P(x j)

. (9.32)

Then

P(x = 1|y = 1) =
P(y = 1|x = 1)P(x = 1)

P(y = 1|x = 0)P(x = 0) + P(y = 1|x = 1)P(x = 1)
=

=
0.85 × 0.1

0.15 × 0.9 + 0.85 × 0.1
= 0.39. (9.33)

We, thus, conclude that if the output was 1, then the input is also 1 with probability 0.39.

3) The mutual information I(X; Y) of variables X and Y measures how much infor-

mation the output conveys about the input. The larger the mutual information the more

reliable the channel is. The mutual information of the channel is

I(X; Y) = S (Y) − S (Y |X) (9.34)

First, the marginal entropy Y is simply S (Y) = S binary(0.22), where S binary(p) is given

by 9.3. Next, the conditional entropy S (Y |X) is

S (Y |X) = S (Y |x = 1)P(x = 1) + S (Y |x = 0)P(x = 0). (9.35)
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where

S (Y |x = 1) = −P(y = 1|x = 1) log2 P(y = 1|x = 1) −

−P(y = 0|x = 1) log2 P(y = 0|x = 1) = −0.85 log2 0.85 − 0.15 log2 0.15, (9.36)

S (Y |x = 0) = −P(y = 1|x = 0) log2 P(y = 1|x = 0) −

−P(y = 0|x = 0) log2 P(y = 0|x = 0) = −0.15 log2 0.15 − 0.85 log2 0.85. (9.37)

Therefore

I(X; Y) = S binary(0.22) − S binary(0.15) = 0.15 bits. (9.38)

Note, that the entropy of the input signal is S (X) = S binary(0.1) = 0.47 bits.

4) In general

I(X; Y) = S binary((1 − f )p + (1 − p) f ) − S binary( f ). (9.39)

Performing explicit maximization of this function over p one arrives at

C(Q) = max
P(X)

I(X; Y) = 0.39 bits. (9.40)

9.4 Problems

Problem 1: Z channel

Consider the Z channel (see Fig. 9.3c) with f = 0.15 and the following probability

distribution of the input symbols: P(x = 0) = 0.9, P(x = 1) = 0.1.

(1) Compute the probability distribution of output P(y).

(2) Compute the probability x = 1 given y = 0.

(3) Compute the mutual information I(X; Y).

(4) What is the channel capacity?



Chapter 10

Dynamic Programming and Optimal
Control Theory

Most multivariate problems are hard because of interactions between individual com-

ponents — then a change in one variable affects all other variables in a global and gen-

erally unpredictable way. Anyone who has tried to pack their luggage knows what we

mean. However, in some cases interactions between variables/components are factorized.

The factorization may mean that solving the problem globally may actually be done in

so-called greedy steps, each representing solving a much simpler sub-problem associated

only with a subset of variables. Dynamic programming is computational method which

allows to identify and use this factorization effectively to solve the whole problem sequen-

tially in a greedy fashion. In this chapter we will consider some examples illustrating this

approach. The discussion will follow the material of the book [5] and the article [2].

10.1 LATEX Engine

Consider a sequence of words of varying lengths, w1, . . . , wn, and pose the question

of choosing locations for breaking the sequence at j1, j2, · · · into multiple lines. Once the

sequence is chosen, spaces between words are stretched, so that the left and right margins

are aligned. We are interested to place the line breaks in a way which would be most

pleasing for the eye, which we define as associated with the least/minimal stretching.

To formalize the notion of the minimal stretching, let us introduce c(i, j) denoting the

cost of placing the sequence of words of lengths, wi, . . . , w j, on a single line, and define

67
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the total additive cost

c(1, j1) + c( j1 + 1, j2) + · · · + c( jl + 1, n), (10.1)

associated with a sequence of the line breaks. We will seek for an optimal sequence

minimizing the total cost. To make description of the problem complete one needs to

introduce a plausible way of “pricing” the breaks. Let us define the total length of the line

as a sum of all lengths (of words) in the sequence plus the number of words in the line

minus one (corresponding to the number of spaces in the line before stretching). Then, one

requires the total length of the line (before stretching) to be less then the widest allowed

margin, L, and otherwise define the cost to be a monotonically increasing function of the

stretching factor, for example

c(i, j) =


+∞, L < ( j − i) +

∑ j
t=i |wt|L − ( j − i) −

∑ j
t=i |wt|

j − i

3

, otherwise
(10.2)

At first glance the problem of finding the optimal sequence seems hard, that is expo-

nential in the number of words. Indeed, formally one has to make a decision of putting if

to place a break (or not) after reading each word in the sequence, thus facing the problem

of choosing an optimal sequence from 2n−1 of possible options.

Is there a more efficient way of finding the optimal sequence? Apparently answer

to this question is affirmative, and in fact, as we will see below the solution is of the

dynamical programming type. The key insight is relation between optimal solution of the

full problem and an optimal solution of a sub-problem consisting of an early portion of

the full paragraph. One discovers that the optimal solution of the sub-problem is a sub-set

of the optimal solution of the full problem. This means, in particular, that we can proceed

in a greedy manner, looking for an optimal solution sequentially - solving a sequence of

sub-problems, where each consecutive problem extends the preceding one incrementally.

Let f (i) denote the minimum cost of formatting a sequence of words which starts from

the word i and runs to the end of the paragraph. Then, the minimum cost of the entire

paragraph is

f (1) = min
j

(c(1, j) + f ( j + 1)). (10.3)

while a partial cost satisfies the following recursive relation

∀i : f (i) = min
j:i≤ j

(c(i, j) + f ( j + 1)), (10.4)
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which we also supplement by the boundary condition, f (n + 1) = 0, stating formally that

no word is available for formatting when we reach the end of the paragraph. The last

equation is an analog of the Bellman equation, which was discussed in the lecture. A

recursive algorithm for f (i) implementing Eq. (10.4) is

======================================

function f(i)

begin:
if i = n + 1 then return 0;

fmin := +∞;

for j = i to n do
fmin := min

(
fmin, c(i, j) + f ( j + 1)

)
;

return fmin;

end
======================================

Exercise: Modify this algorithm so that it returns the best location j of the next line break.

The algorithm answer the formatting question in a way smarter than naive check men-

tioned above. However, it is still not efficient, as it recomputes the same values of f

many times, thus wasting efforts. For example, the algorithm calculates f (4) whenever it

calculates f (1), f (2), f (3). To avoid this unnecessary, one should save the values already

calculated, by placing the result just computed into the memory. Then, when we call,

compute and store the functions f (i) sequentially. By storing the results we win comput-

ing each f (i) only once. Since we have n different values of i and the loop runs through

O(n) values of j, the total running time of the algorithm, relaying on the previous values

stored, is O(n2).

The algorithm just discussed is of the Dynamic Programming type, where the name

emphasises that you proceed sequentially/dynamically without recourse and not wasting

efforts.

10.2 Shortest Path

Let us now discuss another problem. There is a number placed in each cell of a

rectangular table, N × M. One starts from the left-up corner and aims to reach the right-

down corner. At every step one can move down or right, then “paying a price” equal to
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the number written into the cell. What is the minimum amount needed to complete the

task?

Solution: You can move to a particular cell (i, j) only from its left (i − 1, j) or up

(i, j− 1) neighbour. Let us solve the following subproblem — find a minimal price p[i, j]

of moving to the (i, j) cell. The recursive formula (Bellman equation) is:

p[i, j] = min(p[i − 1, j], p[i, j − 1]) + a[i, j], (10.5)

where a[i, j] is a table of initial numbers. The final answer is an element p[n,m]. Note,

that you can manually add the first column and row in the table a[i, j], filled with numbers

deliberately larger than the content of any cell — this helps as it allows to avoid dealing

with the boundary conditions. The resulting algorithm is

======================================

begin:
//initial data:

read: a[i, j];

//boundary conditions:

for i = 2 to N do p[i, 0] := ∞;

for i = 2 to M do p[0, i] := ∞;

p[1, 0] = p[0, 1] = 0;

//dynamic programming:

for i = 1 to N do
for j = 1 to M do

p[i, j] = min(p[i − 1, j], p[i, j − 1]) + a[i, j];

//answer:

writeln: p[N,M];

end
======================================

10.3 Markov Decision Process

Let us discuss a noisy version of the problem just discussed — suppose that at each

step your greedy decision (on where to move next within the table) is probabilistic, say

the suggested move is actually implemented with the probability of only 85%, while with
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the probability of 15% you move to the cell on the right from the suggested move (or stay

at your current cell if the move is not available).

The task here, again, is to find an optimal strategy. However, now we are discussing

the optimality in average. Formally, we optimize the average over noise/uncertainty. This

stochastic optimization problem, in discrete space and discrete time belongs to the class

of problems called Markov Decision Processes (MDP). For additional information infor-

mation on the MDP check the following on-line lecture.

10.4 Discrete Time Control

In this section we formulate and discuss the theory behind the dynamic programming

and control problems. We start with the most simple control case, which is the finite

horizon discrete time deterministic control problem.

The evolution of system is governed by the following equation:

xt+1 = xt + f (t, xt, ut), t = 0, 1, . . . ,T − 1, (10.6)

where xt is vector describing the state of the system (the position in the shortest path

problem) and ut specifies the control or action at time t (where to move next). Note that

the present equation describes a noiseless dynamics, but in principle we can add a noise

term in the right-hand-side and describe MDP problems. The time T is analog of number

of steps in our problem.

Next we should define the cost function:

C(x0, u0:T−1) = ϕ(xT ) +
T−1∑
t=0

R(t, xt, ut). (10.7)

Here R(t, x, u) is the cost associated with taking action u at time t in the state x (corre-

sponding number in the table in the shortest path game) and ϕ(xT ) is the cost (or bonus)

for ending the game in the state xT at time T (in our example we have not such a bonus

because we always ends in the same position). The problem of optimal control is to find

actions u0:T−1 that minimizes C(x0, u0:T−1).

Let us introduce the optimal cost to go:

J(t, xt) = min
ut:T−1

ϕ(xT ) +
T−1∑
s=t

R(s, xs, us)

 , (10.8)

http://ai.berkeley.edu/lecture_videos.html
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which solves the optimal control problem from an intermediate time t until the fixed end

time T , starting at an arbitrary position xt. The minimum total cost is given by J(0, x0).

One can recursively compute J(t, x) from J(t + 1, x) for all x in the following way:

J(t, xt) = min
ut

(R(t, xt, ut) + J(t + 1, xt + f (t, xt, ut))) (10.9)

and the boundary condition is J(T, x) = ϕ(x). Note that the minimization over the whole

path u0:T−1 has reduced to a sequence of minimizations over ut. This simplification is due

to the Markovian nature of the problem: the future depends on the past and vice versa

only through the present.

The algorithm to compute the optimal control u∗0:T−1, the optimal trajectory x∗1:T and

the optimal cost is given by

======================================

1. Initialization: J(T, x) = ϕ(x)

2. Backwards: For t = T − 1, . . . , 0 and for all x compute

u∗t (x) = arg min
u
{R(t, x, u) + J(t + 1, x + f (t, x, u))}

J(t, x) = R(t, x, u∗t ) + J(t + 1, x + f (t, x, u∗t ))

3. Forwards: For t = 0, . . . ,T − 1 compute

x∗t+1 = x∗t + f (t, x∗t , u
∗
t (x∗t ))

======================================

The execution of the dynamic programming algorithm is linear in the horizon time T and

linear in the size of the state and action spaces.

10.5 Continuous Time Control

Next let us discuss generalization of the problem to the case of continuous time. The

dynamic equation becomes

xt+dt = xt + f (xt, ut, t)dt, (10.10)

where xt = x(t). The initial state is fixed, x(0) = x0, and the final state is free. The

problem is to find the control signal u(t), 0 < t < T , such that the cost function

C(x0, u(0→ T )) = ϕ(xT ) +
∫ T

0
dτR(x(τ), u(τ), τ) (10.11)

is minimal. The recursive equation (10.9) becomes

J(t, x) = min
u

(R(t, x, u)dt + J(t + dt, x + f (t, x, u)dt))

≈ min
u

(R(t, x, u)dt + J(t, x) + ∂tJ(t, x)dt + ∂xJ(t, x) f (x, u, t)dt) ,
(10.12)



10.6 Mass on a Spring 73

where in the last line we have used the Taylor expansion of J(t + dt, x + dx) to the first

order in dt and dx. Finally, we obtain

−∂tJ(t, x) = min
u

(R(t, x, u) + f (x, u, t)∂xJ(t, x)) , (10.13)

which is known as Hamilton-Jacobi-Bellman equation, that describes the evolution of J

as a function of x and t and must be solved with boundary condition J(x,T ) = ϕ(x).

The optimal control at the current x, t is given by

u(x, t) = arg min
u

(R(t, x, u) + ∂xJ(t, x) f (x, u, t)) . (10.14)

Note that in order to compute the optimal control at the current state x(0) at t = 0 one

must compute J(x, t) for all values of x and t.

10.6 Mass on a Spring

To illustrate introduced concepts consider a mass on a spring. The equation of motion

is given by

z̈ = −z + u, (10.15)

where −z is restoring force (k = 1), z̈ is acceleration (m = 1), and u is unspecified control

signal with −1 ≤ u ≤ 1. We want to solve the control problem: given initial position and

velocity at time t = 0, find the control path u(0→ T ) such that z(T ) is maximal.

The state vector x = (x1, x2)T is two-dimensional, where x1 = z and x2 = ż, and then

ẋ = Ax + Bu, A =

 0 1

−1 0

 , B =

01
 . (10.16)

The problem is of the above type, with f (x, u, t) = Ax + Bu, ϕ(x) = CT x, CT = (−1, 0)

and R(x, u, t) = 0.

The Hamilton-Jacobi-Bellman equation reads as

−∂tJ = min
u

[
(∂xJ)T (Ax + Bu)

]
= (∂xJ)T Ax − |(∂xJ)T B|, (10.17)

or we can rewrite it in the following form:

−∂tJ = ż∂zJ − z∂żJ − |∂żJ|. (10.18)
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We try J(t, x) = ψ(t)T x + α(t) = α(t) + ψ1(t)z + ψ2(t)ż and then

∂tψ1 = ψ2, ∂tψ2 = −ψ1, ∂tα = |ψ2|. (10.19)

These equations must be solved for all t with final boundary conditions ψ1(T ) = −1,

ψ2(T ) = 0 and α(T ) = 0. Note that the optimal control (10.14) only requires ∂xJ(x, t),

which in this case is ψ(t) and thus we do not need to solve the equation for α. The solution

for ψ is

ψ1(t) = − cos(t − T ), ψ2(t) = sin(t − T ), 0 ≤ t ≤ T, (10.20)

and the optimal control is

u(x, t) = arg min
u

(∂xJ(t, x) f (x, u, t)) = arg min
u

(ψ1ż − ψ2z + ψ2u) = −signψ2(t). (10.21)

As an example consider x1(0) = x2(0) = 0, T = 2π. Then the optimal control is

u = −1, 0 < t < π, (10.22)

u = 1, π < t < 2π, (10.23)

and using the equation (10.16) we can calculate the optimal trajectories:

x1 = cos t − 1, x2 = − sin t, 0 < t < π, (10.24)

x1 = 3 cos t + 1, x2 = −3 sin t, π < t < 2π. (10.25)

We see that in order to excite the spring to its maximal length at T , first we should push

the spring down for 0 < t < π and then to push the spring up between π < t < 2π, taking

maximally advantage of the intrinsic dynamics of the spring.

Note that since there is no cost associated with the control u and u is limited between

−1 and 1, the optimal control is always either −1 or 1. This is known as bang-bang

control.

10.7 Problems

Problem 1. Labyrinth with a mousetrap.

A mouse lives in the labyrinth shown below. At each time step the mouse chooses

at random one of the doors and leaves the room trough this door. The process repeats.

Formally, mouse dynamics is described fully by a Markov chain of transitions between

six states.
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(i) Write down the transition matrix P for this Markov chain. Is it irreducible, aperi-

odic, ergodic?

By definition, the stationary distribution π∗ is an eigenvector of P, which corresponds

to the eigenvalue λ = 1, i.e. it satisfies the equation Pπ∗ = π∗.

(ii) Find the stationary distribution. Does the detailed balance hold?

Now suppose that initially at t = 0 the mouse was in the room 1.

(iii) What is the probability to find the mouse in the room 5 in 4 steps? In 5 steps?

(iv) Do the probabilities of finding the mouse in different rooms converge to the sta-

tionary distribution π∗?

Suppose one places a mousetrap in room 5 when the mouse is in room 1.

(v) Find the expected number of steps leading the mouse to the trap, i.e. the expected

number of steps till the mouse enters the room 5 for the first time.

Hint: One (of many) ways of answering (v) is to consider the function p(i) — the

expected number of steps leading to the trap given that the mice is in the room i, and

attempt to relate p(i) with different i to each other. The resulting system of equations will

be akin to the Bellman equations describing theory behind the dynamic programming.



Chapter 11

Inference and Learning over Trees

Pair-wise graphical model represents a set of random variables and their conditional

dependencies via a graph: nodes correspond to variables and edges represent conditional

dependencies. The random variable is conditionally independent of all other variables

given its neighbors. That models are widely used in statistics and machine learning.

Figure 11.1: A simple example of directed graphical model. Clouds lead to rain, rain

influences whether the sprinkler is activated, and both rain and the sprinkler influence

whether the grass is wet.

11.1 Ising Tree Model

The main focus of this recitation is on the undirected graphical models. We assume

that if two nodes are connected then they influence each other. A simple example of an

undirected model is given by the Ising model representing ensemble of spins with pair-

wise interaction. The probability of a given state of the system is

p(σ) =
1
Z

exp (−βE(σ)) (11.1)

76
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where the energy of the state, σ, is

E(σ) = −
1
2

∑
(i, j)∈E

σiJi jσ j +
∑
i∈V

hiσi (11.2)

and the so-called partition function (normalization factor) is

Z =
∑
σ

exp (−βE(σ)) . (11.3)

The undirected graph G = (V,E) describes the interaction pattern of spins.

For the system of n spins, the number of possible states is 2n, and thus computa-

tional efforts for computing the partition function, (11.3), is at least 2n (naive enumera-

tion). However, one hopes to improve this worst case estimate for complexity, by utilizing

structure of the graph. One idea is to explore memory, hopefully avoiding many repetitive

computations obviously characteristic of the naive approach.

It turns out that the problem can be solved in O(n), i.e. in the number of steps scaling

linearly with the number of spins, in the case when the interaction/factor graph G is a tree

– that is a graph containing no loops. Let us illustrate the main idea of the approach on

the exemplary tree graphs shown in Fig. 11.2.

Figure 11.2: Exemplary interaction/factor graphs which are tree.

For a linear chain of n spins shown in Fig. 11.2a, the partition function is

Z =
∑
σn

Z(σn), (11.4)

where Z(σn) is the newly introduced object representing sum over all but last spin in the

chain, labeled by n. Zn can be expressed as follows

Z(σn) =
∑
σn−1

exp(Jn,n−1σnσn−1 + hnσn)Z(n−1)→(n)(σn−1), (11.5)
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where Z(n−1)→(n)(σi) is the partial partition function for the subtree (a shorter chain in this

case) rooted at n − 1 and built excluding the branch/link directed towards n. The newly

introduced partially summed partition function contains summation over one less spins

then the original chain. In fact, this partially sum object can be defined recursively

Z(i−1)→(i)(σi−1) =
∑
σi−2

exp(Ji−1,i−2σi−1σi−2 + hi−1σi−1)Z(i−2)→(i−1)(σi−2) (11.6)

that is expressing one partially sum object via the partially sum object computed on the

previous step. Advantage of this recursive approach is obvious – it allows to replace

summation over the exponentially many spin configurations by summing up of only two

terms at each step of the recursion. This is the essence of the method known as the

Dynamic Programming. In fact we will get a special recitation (# 12) devoted primarily

to this important method.

The approach just explained can be generalized from the case of the linear chain to

the case of a general tree. Then, in the general case Z(σi) is the partition function of the

whole tree with a fixed value of the spin variable at the site/node i. Next one derives

Z(σi) = ehiσi
∏
j∈∂i

∑
σ j

eJi jσiσ jZ j→i(σ j)

 , (11.7)

where ∂i denotes the set of neighbors of the i-th spin and

Z j→i(σ j) = eh jσ j
∏

k∈∂ j\i

∑
σk

eJk jσkσ jZk→ j(σ j)

 (11.8)

is the partition function of the subtree rooted at the node j.

Let us illustrate the general scheme on example of the tree shown in Fig. 11.2b, one

obtains

Z =
∑
σ4

Z(σ4), (11.9)

The partition function, partially summed and conditioned to the spin value at the spin, σ4,

is

Z(σ4) = eh4σ4
∑
σ5

eJ45σ4σ5Z5→4(σ5)
∑
σ6

eJ46σ4σ6Z6→4(σ6)
∑
σ3

eJ34σ3σ4Z3→4(σ3) (11.10)

where

Z3→4(σ3) = eh3σ3
∑
σ1

eJ13σ1σ3Z1→3(σ1)
∑
σ2

eJ23σ2σ3Z2→3(σ2). (11.11)
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Exercise 1. Demonstrate that the ith spin is conditionally independent of all other

spins given its neighbors, i.e.

p(σi|σ/σi) = p(σi|σ j ∼ σi), (11.12)

where, p(σi|σ/σi), is the probability distribution of the ith spin conditioned to the values

of all other spins, and, p(σi|σ j ∼ σi), is the probability distribution of ith spin conditioned

to the spin values of its neighbors.

11.2 Properties of Undirected Tree-Structured
Graphical Models

It appears that in the case of a general pair-wise graphical model over trees the joint

distribution function over all variables can be expressed solely via single-node marginals

and pair-vise marginals over all pairs of the graph-neighbors. To illustrate this important

factorization property, let us consider examples shown in Fig. 11.3. In the case of the

two-nodes example of Fig. 11.3a the statement is obvious as following directly from the

Bayes formula

P(x1, x2) = P(x1)P(x2|x1), (11.13)

or, equivalently, P(x1, x2) = P(x2)P(x1|x2).

For the pair-wise graphical model shown in Fig. 11.3b one obtains

P(x1, x2, x3) = P(x1, x2)P(x3|x1, x3) = P(x1, x2)P(x3|x2) =

= P(x1)P(x2|x1)P(x3|x2) =
P(x1, x2)P(x2, x3)

P(x2)
, (11.14)

where the conditional independence of x3 on x1, P(x3|x1, x2) = P(x3|x2), was used.

Next, let us work it out on the example of the pair-wise graphical model shown in

Fig. 11.3

P(x1, x2, x3, x4) = P(x1, x2, x3)P(x4|x1, x3, x4) = P(x1, x2, x3)P(x4|x2) =

= P(x1, x2)P(x3|x1, x2)P(x4|x2) = P(x1, x2)P(x3|x2)P(x4|x2) =

= P(x1)P(x2|x1)P(x3|x2)P(x4|x2) =
P(x1, x2)P(x2, x3)P(x2, x4)

P2(x2)
. (11.15)

Here one uses the following reductions, P(x4|x1, x3, x4) = P(x4|x2) and P(x3|x1, x2) =

P(x3|x2), related to respective independence properties.
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Figure 11.3: Examples of undirected tree-structured graphical models.

Finally, it is easy to verify that the joint probability distribution corresponding to the

model in Fig. 11.3d is

P(x1, x2, x3, x4, x5, x6) = P(x1)P(x2|x1)P(x3|x2)P(x4|x2)P(x5|x2)P(x6|x5) =

=
P(x1, x2)P(x2, x3)P(x2, x4)P(x2, x5)P(x5, x6)

P3(x2)P(x5)
. (11.16)

In general, the joint probability distribution of a tree-like graphical model can be writ-

ten as follows

P(x1, x2, . . . , xn) =
∏

(i, j)∈E P(xi, x j)∏
i∈V Pqi−1(xi)

, (11.17)

where qi is the degree of the ith node. Eq. (11.17) can be proven by induction.

11.3 Learning on Tree

Eq. (11.17) suggests that knowing the structure of the tree-based graphical model al-

lows to express the joint probability distribution in terms of the single-(node) and pairwise

(edge-related) marginals. Below we will utilize this statement to solve an inverse problem.
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Specifically, we attempt to reconstruct a tree representing correlations between multiple

(ideally, infinitely many) snapshots of the discrete random variables x1, x2, . . . , xn?

A straightforward strategy to achieve this goal is as follows. First, one estimates all

possible single-node and pairwise marginal probability distributions, P(xi) and P(xi, x j),

from the infinite set of the snapshots. Then, we may similarly estimate the joint distribu-

tion function and verify for a possible tree layout if the relations (11.17) hold. However,

this strategy is not feasible as requiring (in the worst unlucky case) to test exponentially

many, nn−2, possible spanning threes. Luckily a smart and computationally efficient way

of solving the problem was suggested by Chow and Liu in 1968.

Consider the probability distribution

PF(x1, x2, . . . , xn) =
∏

(i, j)∈EF P(xi, x j)∏
i∈VF Pqi−1(xi)

, (11.18)

associated with a three-structured graph F. ”Distance” between correct probability distri-

bution P and the candidate probability distribution, PF , can be measured in terms of the

Kublack-Leibler divergence

D(P ∥ PF) = −
∑

x⃗

P(x⃗) log2
P(x⃗)

PF(x⃗)
(11.19)

This measure is always positive if P and PF are different, and is zero if these distribu-

tions are identical. Then, we are looking for a tree that minimizes the Kublack-Leibler

divergence.

Substituting (11.18) into Eq. (11.19) one arrives at the following chain of explicit

transformations

∑
x⃗

P(x⃗)

logP(x⃗) −
∑

(i, j)∈EF

logP(xi, x j) +
∑
i∈VF

(qi − 1) logP(xi)

 =
=

∑
x⃗

P(x⃗) logP(x⃗) −
∑

(i, j)∈EF

∑
xi,x j

P(xi, x j) logP(xi, x j) +

+
∑
i∈VF

(qi − 1)
∑

xi

P(xi) logP(xi) = −
∑

(i, j)∈EF

∑
xi,x j

P(xi, x j) log
P(xi, x j)
P(xi)P(x j)

+

+
∑

x⃗

P(x⃗) logP(x⃗) −
∑
i∈VF

∑
xi

P(xi) logP(xi), (11.20)

where the following nodal and edge marginalization relations were used, ∀i ∈ VF :

P(xi) =
∑

x⃗\xi
P(x⃗), and, ∀(i, j) ∈ EF : P(xi, x j) =

∑
x⃗\xi,x j

P(x⃗), respectively. One
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observes that the Kublack-Leibler divergence becomes

D(P ∥ PF) = −
∑

(i, j)∈EF

I(xi, x j) +
∑
i∈VF

S (xi) − S (x⃗), (11.21)

where

I(xi, x j) =
∑
xi,x j

P(xi, x j) log2
P(xi, x j)

P(xi)P(x j)
(11.22)

is the mutual information of the pair of random variables xi and x j.

Since the entropies S (xi) and S (X) do not depend on the tree choice, minimizing the

Kublack-Leibler divergence is equivalent to maximizing the following sum over branches

of a tree ∑
(i, j)∈EF

I(xi, x j). (11.23)

Based on this observation, Chow and Liu have proposed a simple algorithm for tree re-

construction: at each stage of the procedure one should simply adds the maximum mutual

information pair. For the set of n random variables, one ought to consider n(n− 1)/2 pos-

sible branches. Let us index the branches according to decreasing weights I(xi, x j) so that

the weight of bα is greater than or equal to the weight of bβ whenever α < β. We then start

by selecting b1 and b2 and add b3 if b3 does not form a cycle with b1 and b3. The process

continues, where selection a branch occurs whenever the newly picked branch does not

form a cycle with the set of previously selected. Otherwise, selection of the branch is

rejected. This procedure produces a unique solution if the branch weights are all different

(no degeneracy). Multiple solutions are possible in the degenerate case, however all the

solutions show the same maximum weight.

11.4 Approximation

Eq. (11.17) is exact only in the case when it is guaranteed that the graphical model

we attempt to recover forms a tree. However, the same tree ansatz can be used to re-

cover the best tree approximation for a graphical model defined over a graph with loops.

How to choose the optimal (best approximation) tree in this case? To answer this ques-

tion within the aforementioned Kublack-Leibler paradigm one needs to compare the tree

ansatz (11.17) and the empirical joint distribution. This reconstruction of the optimal tree

is based on the Chow-Liu algorithm.

Exercise 2
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Find the optimum tree approximation of a fourth-order binary distribution P(x1, x2, x3, x4)

listed in Table 1

Table 11.1: A binary probability distribution P(x1, x2, x3, x4) in comparison with the tree

approximation and the approximation based on the independence assumption.

x1x2x3x4 P(x1, x2, x3, x4) P(x1)P(x2|x1)P(x3|x2)P(x4|x1) P(x1)P(x2)P(x3)P(x4)

0000 0.100 0.130 0.046

0001 0.100 0.104 0.046

0010 0.050 0.037 0.056

0011 0.050 0.030 0.056

0100 0.000 0.015 0.056

0101 0.000 0.012 0.056

0110 0.100 0.068 0.068

0111 0.050 0.054 0.068

1000 0.050 0.053 0.056

1001 0.100 0.064 0.056

1010 0.000 0.015 0.068

1011 0.000 0.018 0.068

1100 0.050 0.033 0.068

1101 0.050 0.040 0.068

1110 0.150 0.149 0.083

1111 0.150 0.178 0.083

Solution:

To recover the best approximation tree it is sufficient to estimate from the data (thus

empirical) mutual information between all pairs of random variables

I(x1, x2) = 0.079 (11.24)

I(x1, x3) = 0.00005 (11.25)

I(x1, x4) = 0.0051 (11.26)

I(x2, x3) = 0.189 (11.27)

I(x2, x4) = 0.0051 (11.28)

I(x3, x4) = 0, 0051 (11.29)
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Figure 11.4: Graphical model corresponding to the fourth-order binary distribution

Since I(x2, x3) and I(x1, x2) are the two largest quantities, (x2, x3) and (x1, x2) con-

stitute the first two branches of the optimum tree. To select the next branch note that

I(x1, x4) = I(x2, x4) = I(x3, x4). To brake the degeneracy one would pick arbitrarily any

one of these three branches. The resulting tree provides optimal decomposition of the

joint probability into product of the single-node and pair-wise conditional probabilities.

For the purpose of comparison, the approximant done under assumption of statistical in-

dependence is also provided. One observes that the optimum tree approximants are closer

to the true distribution. Indeed, the Kublack-Lebler measure of proximity (distance),

D(P ∥ Papprox), is 0.094 for the best tree approximation in the contrast with 0.364 for the

best independent-variable anzatz.
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